
ABSTRACT
XML’s meta-language aspect and extensive tool support make it an
attractive way to build modularly extensible modeling languages.
XML’s original meta-language, the document type definition
(DTD), is being replaced by the more expressive XML schema.
Developing programmatic tools to manipulate models specified in
XML schemas is made easier though the use of data bindings. Data-
bindings model elements and attributes in XML schemas as objects
in an object-oriented programming language. We have developed
an XML-schema aware generator for Java data bindings called ‘api-
gen.’ While developing apigen, we encountered and worked
through several issues, both essential and accidental, related to gen-
erating XML schema data bindings. These issues, and the solutions
we developed, are described in this paper.

Keywords
XML schema, XML, data bindings, Java, apigen.

1. INTRODUCTION
One of XML's most powerful features is its meta-language aspect.
While XML [4] primarily began as a document markup language,
its usefulness as a common format for exchanging and representing
all sorts of data structures has been well-proven. The document
type definition (DTD) meta-language that accompanies XML 1.0
[4] allows the development of new XML-based languages. DTDs
allow developers to specify the contents of elements and attributes
in XML instance documents. However, the expressive power of
DTDs is limited. DTDs do not allow specification of simple types
like booleans, floats, or integers. DTDs do not allow patterns (like
regular expressions) to be specified in simple attribute or element
types. Most importantly, DTDs do not have a mechanism by which
derived attribute and element types can be created to add or remove
elements from a base type [13].

DTDs, to a certain extent, allow modular extensibility through a
construct known as a parameter entity. A parameter entity allows
one DTD to reuse (import) element and attribute definitions from
another DTD. An example of using this method to create a
modularly extensible metalanguage is the Modularization of
XHTML [2] W3C recommendation. This recommendation breaks
down the existing specification of XHTML into modules which
provide various aspects of XHTML functionality. Language
creators can compose these modules into hybrid document types
that combine aspects of each module into a new document type.
The main disadvantage of using parameter entities in this way is
that a new hybrid document type definition must be created for each
new combination of definitions required by XML instance

document authors.

The development of the XML schema recommendation [14, 3] by
the W3C and the emergence of associated tools have made it
possible for developers to more easily create modularly extensible
languages as XML applications. XML schemas have a type-
inheritance mechanism similar to that found in object-oriented
programming. Through this mechanism, extension schemas can
define derived types that add and remove elements and attributes to/
from base types. The base schema need not be modified. An
element of a derived type may be substituted anywhere an element
of its base type is required. No hybrid document type definition is
needed. This ensures that instance documents are valid to both the
original schema and individual developers' extension schemas.

The creation of extensible languages with XML schemas
necessitates the creation of equally flexible and extensible tools to
support these languages. Each tool working with an extensible
language must be able to quickly adapt to new language extensions
and properly deal with unknown extensions without disturbing
them.

Programmatic manipulation of XML documents is usually done
through one of the available XML APIs: DOM [9], SAX [11], or
JDOM [8]. These APIs provide generic interfaces that correspond
to the semantics of XML. Constructs in these APIs include
elements, attributes, and documents.

While XML schemas (and DTDs) are generally used as a basis for
validating instance documents, they can also be used as a road map
for generating friendly, syntax-based programmatic interfaces to
XML documents. Because the syntax of an XML document can be
defined completely by a schema (or set of schemas), automated
tools can generate data bindings based on the syntax defined in the
schema.

We have constructed one of the first data-binding generators that
works on XML schemas, called ‘apigen.’ Given a set of schemas,
apigen generates an object-oriented class library that allows
manipulation of XML documents that conform to those schemas.
When schemas change or new schemas are added, users simply re-
run the tool to generate new bindings. While developing this
generator, we encountered several salient issues that complicated
our development. Some of these issues were accidental, such as
immature XML tools. Some were more fundamental, such as
XML’s limited support for dealing with unknown types. The
balance of this paper describes the motivation for our work, the
issues and challenges we faced building apigen, and solutions to
these issues that we incorporated into the apigen tool.

2. MOTIVATION
My research group developed a modularly extensible language
when we were defining a new representation for software
architectures [12]. Our research group and one from Carnegie
Mellon University wanted to agree on a common core set of
architectural constructs, to be defined in XML, that we could share.
However, each group wanted to pursue its own research interests,
adding new concepts to the core and experimenting with new
modeling constructs. As such, we defined the core language, which

Issues in Generating Data Bindings for an
XML Schema-Based Language

Eric M. Dashofy

Department of Information and Computer Science
University of California, Irvine

Irvine, CA, 92697-3425, U.S.A.
+1 949 824 2260

edashofy@ics.uci.edu



we call xArch [5], in an XML schema. Each research group has
since built its own extensions to this core representation, leaving
the core unchanged. Currently, our group has defined six
extensions to the core representation of various sizes. Our set of
extensions is growing as our research interests evolve.

3. APPROACH
Despite the fact that XML is mostly human-readable, the amount
of namespace information and markup that is present in a typical
XML document makes it unreasonable to write one by hand.
Unlike traditional architecture description languages [10], which
structurally resemble programming languages, xArch documents
are intended to be read and written entirely through tools—the
underlying XML basis of xArch documents is hidden from the
end-user.

Developing such tools requires a programmatic interface to xArch
documents. As noted above, APIs like DOM and JDOM can be
used to manipulate XML documents in general. However, these
APIs fail to take advantage of the additional structural information
about XML documents provided by their XML schema(s). To take
advantage of this information, we have developed a Java data-
binding generator for xArch schemas, called ‘apigen.’ While
apigen was designed specifically for xArch schemas, the
techniques we used to develop it are generally applicable to
generating data bindings for arbitrary XML schemas.

3.1 Apigen
Apigen takes, as input, a set of XML schemas. Because of the size
of the XML schema language, apigen supports only a reduced
subset of XML schema constructs. This subset includes simple and
complex types, attributes, varying cardinalities of elements, type
derivation, and enumerations. Additional constructs can be added
to apigen at incremental cost. This subset of the XML schema
language satisfies a large domain of schemas, and was sufficient
for all the schemas we developed in the evolution of xArch.

Apigen produces, as output, a set of Java interfaces and their
implementations. An interface/implementation pair is generated
for each type defined in an XML schema. Each schema passed to

apigen is assumed to declare its own target namespace. For each
namespace, apigen generates a new Java package. All
manipulation of the object model is done through the Java
interfaces. The generated implementations of these interfaces are
never directly instantiated or referred to by users. Rather, apigen
generates a factory object for each package that can create
instances of all interfaces used by that package. Derived types in
an extension XML schema are represented as subinterfaces and
subclasses in Java, providing a natural mapping between XML
type inheritance and object-oriented inheritance.

The objects generated by apigen use an object-oriented model with
a DOM interface as the underlying representation format for XML
data. Operations on apigen-generated objects result in
manipulations of the in-memory model. Apigen currently uses the
Apache Xerces [1] XML parser and DOM implementation, but all
parser-specific functionality is encapsulated in a single class. The
relationship between the in-memory model, DOM, classes
generated by apigen, and external tools is depicted in Figure 1.

DOM is a fairly ubiquitous interface, implemented in many
languages, that allows random access to the XML tree. While
DOM exposes functions generally useful for dealing with anySchemaContext

Factory Object

FooImpl

Implementation for
type Foo

BarImpl

Implementation for
type Bar

IFoo

Interface for type Foo

IBar

Interface for type Bar

Implemented byImplemented by

creates instances of

In-Memory Model
manipulates

Toolcalls

calls calls

Figure 1. Relationship between tools, classes generated by
apigen, the DOM interface, and the in-memory model.
Rectangular boxes represent individual Java classes generated by
apigen.

DOM
Implementation

calls

calls

APIGEN-GENERATED OUTPUT
For a technical perspective on apigen’s generated interfaces,
consider the following example:

The following is an XML schema type, defined in the XML
schema language:

<xsd:complexType name="TrivialArchitecture">
<xsd:sequence>
<xsd:element name="description"
type="Description"/>
<xsd:element name="component"
type="Component" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

This hypothetical type defines a trivial architecture for a
software system, containing a description and zero or more
components. Apigen, on encountering this type, would generate
interface functions as follows in a new Java interface called
ITrivialArchitecture:

public void setDescription(IDescription value)

public void clearDescription()

public IDescription getDescription()

public boolean hasDescription(IDescription
descriptionToCheck)

public void addComponent(IComponent
newComponentInstance)

public void addComponent(Collection components)

public void clearComponents()

public void removeComponent(IComponent
componentToRemove)

public void removeComponents(Collection components)

public IComponent getComponent(String id)

public Collection getComponents(Collection ids)

public Collection getAllComponents()

public boolean hasComponent(IComponent
componentToCheck)

public Collection hasComponents(Collection
componentsToCheck)

public boolean hasAllComponents(Collection
componentsToCheck)

Because the description has cardinality 1, apigen generates
functions for setting, clearing, and retrieving a single
description. Since the components have cardinality >1, apigen
generates a larger set of functions that deal with a collection of
components.



XML document, using the DOM interface to create XML instance
documents valid to a particular set of schemas is difficult. DOM
users must write an extensive amount of code to, for example,
handle XML namespaces, add appropriate type declarations to
elements, and maintain proper element sequences (when sequences
are specified in the schemas). Apigen-generated classes hide all
this detail, effectively insulating tool builders from these XML
peculiarities.

4. ISSUES ENCOUNTERED
While developing apigen, we encountered a number of issues, both
essential and accidental, related to generating data bindings based
on XML schemas. These are detailed in this section.

4.1 Handling Unknown Types
Perhaps the most important and essential difficulty we discovered
while developing apigen is the inherent difficulty in properly
handling unknown XML schema types in instance documents.
Ideally, tools should treat an unknown type as its closest known
ancestor type (if any). This gives the tools maximal information
about the structure of the unknown type. This problem seems
relatively easy to solve, but the type inheritance mechanism of
XML schemas introduces some subtle and pervasive problems.

Consider an XML schema element E that contains an element of
type T. In the same XML schema, a type Ta is defined that extends
type T. Assume that, in an unknown schema, the type Ta has been
further extended into a type Tb. In an XML instance document,
elements of type Ta and Tb can both be substituted for the element
of type T in E. Certainly, without knowledge of the XML schema
defining Tb, it is impossible to process whatever extensions were
made in Tb. However, it is desirable to at least process elements of
type Tb as if they were instances of Tb’s known base type, Ta. This
would give programs access to the subset of things in Tb defined in
Ta.

When a program like an apigen-generated library encounters an
XML instance document that contains an element of type Tb, it
encounters a problem. Because type Tb is unknown, it is
impossible to infer anything about its ancestors in the type
hierarchy. The only thing that is known for sure is that Tb is a type
derived from T, because an element of type Tb was used in place of
an element of type T. Without additional knowledge of Tb, it is
impossible to determine whether Tb is a type derived from Ta, a
different type derived from T, or a type defined even deeper in the
type hierarchy. This issue cannot be completely resolved within the
current XML standard because an element in an XML document
refers only to the single type of which it is an instance. The
derivation of this type is never defined in the XML document, and
can only be divined with full knowledge of all the schemas in
which the type and all its ancestor types are defined.

This difficulty can impede interoperability between tools built to
deal with different sets of xArch XML extensions. There are
several approaches to work around this problem. In the case of
apigen, the optimal solution is to acquire the schema that contains
the unknown type and use apigen to generate libraries for that
schema. However, this is not always possible or desirable. Without
the schema, one approach to handle the unknown type is to guess
its derivation heuristically by looking at element contents.
Unfortunately, this is extremely unreliable, and the accuracy of the
approach varies depending on the (mostly arbitrary) contents of the
elements in question. Apigen-generated libraries work around this
problem by treating unknown derived types as instances of their
most basic base type, as this is the most that can reliably inferred
about the derived type. In the above example, the apigen-generated
libraries would treat the element of type Tb as one of type T, since
that is all that can be reliably inferred about Tb.

4.2 Type Derivation by Restriction
Unlike most object-oriented programming languages, XML
schemas allow type derivation by restriction. That is, a derived
type can alter the data model of its base type. There are limits on
what kinds of restrictions are allowed. Elements from the base type
may not be removed entirely in the derived type, but their
cardinality can change (an exception to the no-removals rule
occurs when the cardinality of an optional element changes from
at-most-one to at-most-zero). Apigen-generated libraries assume
constant cardinality of elements from base type to derived type
because elements with cardinality 0-1 are manipulated by
functions that expect a single value, whereas elements with
cardinality >1 are manipulated using Java collections. As such,
apigen does not currently support type derivation by restriction,
though this could be added with moderate effort if the need arises.

4.3 XML Schema Lacks Multiple Inheritance
XML schemas permit only single inheritance among XML schema
types. This causes problems in the definition of a modularly-
extensible language like xArch. Two conceptually orthogonal
extensions to the same element cannot coexist in the same instance
document unless one extension is made to be dependent on
another. Henry Thompson, one of the editors of the XML schema
standard, has stated that the XML schema working group
acknowledges this problem and is considering adding multiple
inheritance support in the future [7]. Admittedly, ‘mixins,’ in the
form of substitution groups, are allowed in XML schemas, which
can simulate some aspects of multiple inheritance; however, these
are not a substitute for true multiple inheritance. To work around
this problem in developing xArch, we introduced artificial
dependencies among some of our extensions. As such, some
extensions are syntactically dependent on other extensions despite
the fact that they are semantically unrelated. We intend to remove
these artificial dependencies when and if multiple inheritance is
supported in XML schemas.

Ironically, while the lack of support for multiple inheritance in
XML schemas complicated our schema development, it greatly
simplified our development of apigen. Apigen generates Java
libraries, and Java also lacks support for multiple inheritance. As
such, there was a natural mapping between the type inheritance in
our XML schemas and the object-oriented inheritance in the
apigen-generated Java libraries.

The future change from a single-inheritance model to a multiple-
inheritance model could be problematic. In a language like C++
that supports multiple inheritance, a natural mapping between
XML type multiple inheritance and object-oriented multiple
inheritance is relatively easy to maintain. However, in a language
like Java, with its support only for single inheritance, the problem
is compounded. We have anticipated this problem in our
development of apigen. This is part of the reason why apigen
generates both a Java implementation and interface for each XML
schema type. Java allows an object to implement multiple
interfaces. We believe it will be possible for a future version of
apigen to generate objects that implement multiple interfaces as
needed. Admittedly, this has its own drawbacks, but may be the
only feasible solution in a programming language without support
for multiple inheritance.

4.4 Immature XML Tools
At the time apigen was developed, many XML tool vendors and
developers were struggling to keep up with the rapid evolution of
various XML standards and technologies. In fact, our development
of apigen was only undertaken after a search for off-the-shelf XML
schema-aware data binding generators failed to produce any
promising results. Even Apache Xerces [1], the parser on which
apigen and the apigen-generated libraries are built, has many small
peculiarities and bugs (mostly namespace-related) that can inhibit
the correct production and processing of XML documents.

While this is a mostly accidental problem that will almost



assuredly be resolved over time, it reveals a good reason to use a
tool like apigen to generate XML data bindings. Workarounds for
peculiarities and bugs in DOM implementations, parsers and other
tools are implemented directly in apigen and the apigen-generated
libraries. When a bug in the underlying tool is fixed, apigen’s
workarounds can be removed and its Java libraries regenerated
without changing the libraries’ interfaces. Because apigen-
generated libraries hide most of the intricacies of XML from tool
developers, tools can be made more reliable and more focused on
the task at hand.

4.5 Limitations of Apigen
While apigen-generated libraries can hide the nuances of XML
from tool developers, the structure of the object model in the
libraries still mirrors the structure of an XML instance document.
Namely, the objects are arranged hierarchically. Hierarchical
constructions are optimal for hierarchical data, but complex
relationships between elements cannot be easily modeled this way.
We encountered this problem in building xArch because many
views of software architectures resemble a general directed graph
rather than a tree. To get around this problem in our schema
development, we used XLinks [6] extensively to establish links
from one part of the XML-based hierarchy to another.

This problem cannot be solved by an automated tool like apigen,
because solving it requires semantic knowledge of the model being
stored in XML. There is no reasonable way to store such semantic
information in an XML schema or instance document. As such, we
plan to develop a set of convenience libraries that expose a
friendlier, non-hierarchical object model. These convenience
libraries will work alongside the apigen-generated libraries, and
will call them extensively. Because of the amount of semantic
information inherent in these convenience libraries, we believe that
they will necessarily be maintained by hand.

5. CONCLUSION
XML schemas provide a significant opportunity to create
extensible languages, with the tool support of XML, that are useful
in many domains. We used XML schemas in the creation of xArch,
a modularly extensible language for representing software
architectures. To support the development of tools that manipulate
xArch representations, we built apigen, a schema-aware data
binding generator that works on xArch schemas, which are
representative of a large class of XML schemas.

This paper outlines experiences we had while building apigen. In
doing so, we encountered and overcame issues that touched upon
the nature of XML schemas, the difficulties of mapping XML
schema types to programming languages, and problems with the
state-of-the-art in XML tools. These problems ranged from
essential (the inability to properly deal with unknown derived
types in XML instance documents) to the mundane (bugs in our
XML parser and DOM implementation).

The development of apigen has not only highlighted these
important issues and some potential solutions, but it has also
served as a proof-of-concept. Apigen-generated libraries
successfully hide the peculiarities of XML and XML namespaces
from the user, allowing tool builders to concentrate only on
manipulating the modeled data structure (in xArch’s case, a
software architecture description).

Apigen-generated libraries are unable to hide the hierarchical
structure of XML data from the user, as doing so would require
semantic information about the data being modeled. However, we
believe libraries can be built on top of apigen-generated libraries
that can provide this additional level of abstraction.

6. URL
More information on apigen and xArch can be found at:

http://www.isr.uci.edu/projects/xarchuci/

7. ACKNOWLEDGEMENTS
I would like to thank André van der Hoek at UC Irvine and David
Garlan & Bradley Schmerl at Carnegie Mellon University for their
collaboration in the development of xArch. Furthermore, I would
like to thank André van der Hoek, Yuzo Kanomata, Craig Snider,
and Richard N. Taylor for their collaboration, feedback and
guidance in developing apigen and the apigen-generated xArch
libraries. Finally, I would like to thank the anonymous reviewers,
who helped me shape the paper and correct several technical
inaccuracies.

This effort was partially sponsored by the Defense Advanced
Research Projects Agency, and Rome Laboratory, Air Force
Materiel Command, USAF, under agreement number F30602-97-
2-0021. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

The views and conclusions contained herein are those of the author
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency, Rome
Laboratory or the U.S. Government.

8. REFERENCES
[1] Apache Group. Xerces Java Parser Readme. URL: http://

xml.apache.org/xerces-j/index.html.
[2] Altheim, M., Boumphrey, F., Dooley, S., McCarron, S.,

Schnitzenbaumer, S., and Wugofski, T., eds. Modularization
of XHTML. URL: http://www.w3.org/TR/xhtml-modulariza-
tion/.

[3] Biron, P. and Malhotra, A., eds. XML Schema Part 2:
Datatypes. URL: http://www.w3.org/TR/xmlschema-2/.

[4] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.
Extensible Markup Language (XML) 1.0 (Second Edition).
URL: http://www.w3.org/TR/2000/REC-xml-20001006.

[5] Dashofy, E., Garlan, D., Schmerl, B. and van der Hoek, A.,
eds. xArch. URL: http://www.ics.uci.edu/pub/arch/xarch/.

[6] DeRose, S., Maler, E. and Orchard, D., eds. XML Linking
Language (XLink) Version 1.0. URL: http://www.w3.org/TR/
xlink.

[7] Dodds, L. Reconstructing DTD Best Practice. URL: http://
www.xml.com/pub/a/2000/06/xmleurope/schemas.html.

[8] JDom.org. JDOM. URL: http://www.jdom.org/.
[9] Le Hors, A., ed. Document Object Model (DOM) Level 3

Core Specification. URL: http://www.w3.org/TR/2001/WD-
DOM-Level-3-Core-20010126/

[10] N. Medidovic, R. N. Taylor. A Classification and Com-
parison Framework for Software Architecture Descrip-
tion Languages. IEEE Transactions on Software
Engineering. 26(1):70-93. January, 2000.

[11] Megginson Technologies. SAX 2.0: The Simple API for
XML. URL: http://www.megginson.com/SAX/.

[12] D. E. Perry and A. L. Wolf. Foundations for the Study of Soft-
ware Architectures. ACM SIGSOFT Software Engineering
Notes, October 1992.

[13] Sall, K. and St. Laurent, S. DTDs vs. XML Schemas for Data-
centric JavaTM Technology-based Applications. URL: http://
www.cen.com/ng-html/xml/schema/.

[14] Thompson, H., Beech, D., Maloney, M. and Mendelsohn, N.,
eds. XML Schema Part 1: Structures. URL: http://
www.w3.org/TR/xmlschema-1/.


