
An Infrastructure for the Rapid Development of
XML-based Architecture Description Languages

Eric M. Dashofy

André van der Hoek

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
+1 949 824 2260

Richard N. Taylor

ABSTRACT
Research and experimentation in software architectures over the
past decade have yielded a plethora of software architecture de-
scription languages (ADLs). Continuing innovation indicates that
it is reasonable to expect more new ADLs, or at least ADL fea-
tures. This research process is impeded by the difficulty and cost
associated with developing new notations. An architect in need of
a unique set of modeling features must either develop a new archi-
tecture description language from scratch or undertake the daunt-
ing task of modifying an existing language. In either case, it is
unavoidable that a significant effort will be expended in building
or adapting tools to support the language. To remedy this situa-
tion, we have developed an infrastructure for the rapid develop-
ment of new architecture description languages. Key aspects of
the infrastructure are its XML-based modular extension mecha-
nism, its base set of reusable and customizable architectural mod-
eling constructs, and its equally important set of flexible support
tools. This paper introduces the infrastructure and demonstrates
its value in the context of several real-world applications.

1. INTRODUCTION
Software architectures [35] provide a way to reason about soft-
ware systems at a level of abstraction above that of simple mod-
ules, objects or lines-of-code. To model systems at this level,
architects must have expressive modeling languages and tools to
manipulate models expressed in those languages.

The traditional way to represent a software architecture is to
model it in an architecture description language (ADL). Many
ADLs have been developed by both the research- and practice-
oriented communities. A comprehensive survey of architecture
description languages [29] reveals that most ADLs share a set of
fundamental modeling constructs and concepts, including compo-
nents, connectors, interfaces, and architectural configurations.
ADLs are distinguished from one another by a small number of
features, supported by tools, that have evolved from various areas
of interest or need.

ADL research is still an active area, making it unlikely that a sin-
gle, unified ADL will soon emerge. We can expect a continuing

proliferation of new ADLs and ADL features for several reasons.
First, the software architecture community continues to identify
and experiment with new ADL features and combinations thereof.
This is natural, given that different domains have widely different
areas of concern, and depending on the purpose of the architec-
tural model, certain constructs may or may not be appropriate or
useful. Next, the software architecture community does not agree
on what features should be present in an ADL, or precisely what
these features should model [29].

Given the continuing succession of innovations from the research
community, it would be useful to have an infrastructure with
which to quickly construct new ADLs. Furthermore, it should be
possible to do so efficiently by combining compatible features
together and extending/modifying existing features. Architects
thus develop new ADLs by writing their own grammars in meta-
languages of their choosing and building their own parsers, syntax
checkers, and support tools.

In an effort to address this situation, we have developed an infra-
structure for the rapid development of XML-based [9] ADLs. Our
infrastructure provides:

1. an XML-based modular extension mechanism for rapidly de-
veloping new ADLs;

2. a base set of features that can be reused in ADL develop-
ment; and

3. a flexible set of tools to support ADL development and use.

Using this infrastructure, architects can efficiently and effectively
create new ADLs and modify or extend ADLs created in the infra-
structure. This results in a significant overall reduction in effort.

Tool support is especially vital for the successful use of any ADL
because architecture descriptions persist throughout the product
development lifecycle and evolve along with the described soft-
ware system. Tools are required to create, manipulate, and main-
tain these documents over time. Our infrastructure provides ge-
neric tools valuable to ADL developers like parsers, syntax
checkers, and syntax directed editors for architecture descriptions.
These tools can serve as the basis for more advanced tools that
exploit new ADL features.

It is important to note that neither XML nor our infrastructure
attempts to enforce semantic consistency within an ADL. The
infrastructure is merely a way to define and manipulate represen-
tations of software architectures; interpreting the representations,
or constraining how they may be manipulated, is the job of exter-
nal tools. As such, issues such as resolving feature interaction
problems and enforcing internal consistency of the model are not
addressed. For instance, developers experimenting with modeling

{edashofy,andre,taylor}@ics.uci.edu

new aspects of software systems may use our infrastructure to
temporarily specify redundant or conflicting features in their
ADLs if they so desire. Investigating the semantic relationships
between ADL features is an open research area, and our infra-
structure can serve as the basis for tools and languages that sup-
port this research.

Our infrastructure has been used in several projects, within our
research group, by industrial practitioners, and by other research-
ers. These experiences confirm the effectiveness of different as-
pects of our infrastructure. We demonstrate that our infrastructure
is scalable by modeling and simulating a large military system.
We show the value of our infrastructure’s adaptable and extensi-
ble aspects and tool support in experiments modeling spacecraft
software architectures. Finally, we demonstrate the infrastruc-
ture’s ability to capture concepts from different representations of
an emerging domain (product line architectures). This experience
also shows our infrastructure’s ability to add tool support for new
constructs quickly.

The rest of this paper is organized as follows: Section 2 provides a
background on ADL research to date, Section 3 describes our
approach and infrastructure in detail, Section 4 shows the benefits
of our infrastructure in the context of experiences in several do-
mains, and Section 5 describes related work and how our ap-
proach compares to that work. The final section summarizes our
conclusions and describes our future work.

2. BACKGROUND
Architecture description languages are formal notations “provid-
ing features for modeling a software system’s conceptual architec-
ture, distinguished from the system’s implementation. ADLs pro-
vide both a concrete syntax and a conceptual framework for char-
acterizing architectures” [29]. These notations are typically sup-
ported by tools that facilitate understanding, visualizing, analyz-
ing, instantiating, and simulating architecture descriptions. Repre-
sentative ADLs include Darwin [26], Wright [1], Rapide [25],
MetaH [6], C2SADEL [28], and Koala [32]. As Medvidovic and
Taylor [29] point out, the minimum requirement for a language to

be an ADL is the ability to represent components, connectors,
architectural configurations, and interfaces. Each language listed
here has this ability. Additionally, each language listed here con-
tains distinguishing features that model aspects of software sys-
tems in new or unique ways (see Table 1).

The wide variety of ADL features corresponds to the equally wide
variety of capabilities desired by architects. One way to differenti-
ate ADLs is by what kinds of architectures they can model. Some
ADLs are very generic, like Darwin and Wright, while others are
better suited to specific domains or architectural styles: Rapide
specifically supports event-based architectures; C2SADEL was
built to model architectures in the multi-level notify/request C2
style [41]; MetaH was built to model embedded systems, includ-
ing both hardware and software components. Another way to
differentiate ADLs is by what features of software systems they
model. Koala, for instance, models product lines by modeling
variation points in an architecture. C2SADEL and Darwin are
both capable of modeling properties of dynamic architectures—
those that change at run-time—although they do so in different
ways.

New research issues continue to emerge from the architecture
community. Areas of interest include distributed architectures
[26], dynamic architectures. [34], integrating architectures with
software deployment and maintenance [16], and product line ar-
chitectures [11]. Research in areas such as these indicates that it is
reasonable to expect new ADLs, or at least ADL features, from
the software architecture community. This exemplifies the need
for our infrastructure, which reduces the cost of creating and
modifying ADLs, experimenting with new features, and building
associated tools.

3. APPROACH
To date, many ADLs have been monolithic. Their feature sets and
grammar are fixed, and adding new constructs to a monolithic
ADL is not possible without modifications to the tool set support-
ing that ADL. The cost of extending and adapting such an ADL
and its tools is significant, and may be comparable to developing
a new ADL from scratch.

We approach this problem by developing a modularly extensible
architecture description language. In this approach, sets of related
features are defined in individual modules. These modules can
define new modeling constructs and extend constructs in other
modules. New ADLs are formed by composing modules together.

The idea of an extensible language is not new. Extensible pro-
gramming languages have been investigated for several decades
[10][40]. The results of this research have been adapted to support
extensible languages for representing data as well. Examples of
such languages are SGML [20], RDF [23], and XML [9]. Among
these, XML has several extrinsic benefits not shared by the others:
XML has broad support from standards bodies (most notably the
W3C), researchers, and practitioners, along with a large and grow-
ing set of support tools. This gives any XML-based language a
head-start in terms of compatibility and tool support. Addition-
ally, the new XML Schema standard [42], discussed below, pro-
vides a meta-language suitable for developing modular and exten-
sible notations. Recognizing these factors, and based on our pre-
vious successes building ADLs using XML [21], we have built
our infrastructure to support modularly extensible ADLs that are
defined in XML schemas and manipulated using tools.

ADL Distinguishing Features

Darwin Ability to model distributed, dynamic systems;
operation model described in pi-calculus.

Wright Explicit connectors with checkable formal seman-
tics.

Rapide Event-based architectures specified using partially-
ordered sets of events (POSETS); simulation tools
to check interactions of event-based component
behaviors.

MetaH Specification of how software modules interact
with hardware, real-time and concurrent state ma-
chine aspects.

C2SADL Multiple, heterogeneous, subtyping mechanisms;
varying levels of type conformance. Ability to
model architecture changes imperatively.

Koala Ability to model product line architectures with
optional and variant elements.

Table 1. Representative ADLs and distinguishing features.

Using XML’s ability to create modularly extensible ADLs is only
the first part of our approach. A base set of generic schemas and
flexible tool support are equally important parts of our infrastruc-
ture. It is our strong belief that all three are needed for this infra-
structure to be effective. We discuss details of each part of our
infrastructure below.

3.1 XML Schemas and Extensiblity
The first part of our infrastructure is its adoption of XML schemas
and their extensibility mechanisms to define modularly extensible
ADLs. Since its inception, XML has provided capabilities for
defining modular, extensible languages. XML’s original meta-
language, the document type definition (DTD) [9], can be used for
this purpose, as is evidenced by the Modularization of XHTML
W3C effort [2]. However, using DTDs to create modular lan-
guages introduces a specific problem: each combination of mod-
ules requires a new “hybrid DTD” to describe the resulting lan-
guage. A hybrid DTD is a separate document that describes how
the modules are connected to create a new language; creating and
maintaining this document introduces additional overhead into the
process of creating a modular language.

The XML Schema standard, recently ratified as a W3C recom-
mendation, describes a more expressive meta-language for XML
that is superior to DTDs in a number of ways. First, whereas
DTDs use a style of tags and declarations separate from XML
documents, XML schemas resemble XML documents. More im-
portantly, XML schemas add a type system to XML. This in-
cludes basic types like integers and strings that define the contents
of atomic elements and attributes. Complex types are also al-
lowed, in which elements contain other elements and attributes. In
this type system, types can be extended in a manner similar to
object-oriented subtyping: types can be extended to add new in-
formation, in the form of elements or attributes, without modify-
ing the base type’s definition. An additional advantage of XML
subtyping over object-oriented subtyping lies in type restrictions:
elements and attributes can be removed or restricted in an ex-
tended type.

XML schemas provide the meta-language with which modularly
extensible architecture description languages are created in our
infrastructure. Each schema is one module. Types defined in a
schema may describe new first-class constructs, or add/remove
elements from a base type defined in another schema. Architects
can create a new ADL, then, by choosing an appropriate set of
schemas. They may create these schemas on their own, or they
may reuse and adapt schemas written by other architects.

XML does not solve all the problems of creating a modularly
extensible language. First of all, it does not guarantee syntactic
compatibility among modules. This is mostly due to the fact that
the current version of the XML schema standard does not support
multiple type inheritance. As such, two subtypes that extend the
same base type cannot be combined in a single element. This can
be resolved by introducing artificial dependencies—making one
subtype an extension of the other, even though they may be con-
ceptually orthogonal. We have done this successfully with our
own schemas, as described in the next section. The W3C is con-
sidering multiple inheritance for inclusion in a future version of
XML schemas, which would alleviate this problem.

Second, XML is just syntax. It cannot describe the semantics of
individual elements or relationships among elements. Therefore,

semantics must be checked and enforced with external semanti-
cally-aware tools. This is not different from traditional language
development.

3.2 xADL 2.0
The second part of our infrastructure is a set of reusable schemas
that can be used as the basis for developing new ADLs, collec-
tively known as xADL 2.0 [12]. To maximize the reusability and
applicability of these schemas, we have endeavored to make them
as generic as possible. For instance, our schemas define compo-
nents and connectors, but not their behaviors or how they can be
linked together. These aspects are an important part of many
ADLs, and we have designed the xADL 2.0 schemas so such as-
pects can be specified in extension schemas.

xADL 2.0 provides constructs that are useful for describing soft-
ware architectures in general, as well as three important features
that can be used in an ADL derived from xADL 2.0. These are:

1. separation of run-time and design-time models of a software
system;

2. implementation mappings that map the ADL specification of
an architecture onto executable code; and

3. the ability to model aspects of architectural evolution and
product line architectures.

The breakdown of these high-level features into individual sche-
mas is shown in Table 2. We discuss each schema in detail below.

3.2.1 Separation of Run-Time and Design-Time
Models
Traditionally, ADLs have focused on design-time aspects of a
software system or have combined run-time and design time as-
pects in a single model. However, research on dynamic software
architectures [22][34] has revealed that it is useful to provide a
separate architectural model of a software system at run-time.
Run-time models capture aspects of a running software system
that are different from aspects captured at design-time. For in-
stance, a design-time model of a system might contain information
such as: basic metadata about elements (e.g., authors, sizes, tex-
tual descriptions), expected behavior of components and connec-
tors, and constraints on the arrangements of components and con-
nectors. In contrast, a run-time model of the same system might
contain information such as the current state of a component or
connector (e.g., ‘not started,’ ‘running,’ ‘suspended,’ ‘blocked,’
‘error state’), where a component is running in a distributed sys-
tem (e.g., which machine, what processor, its process ID), and its
communication status (e.g., events or calls waiting to be proc-
essed, a history of recently processed requests).

In xADL 2.0, two schemas accomplish the separation of run-time
and design-time models. Constructs modeling run-time aspects of
a system are defined in the INSTANCES schema, also known as
“xArch,” which we defined in collaboration with researchers at
Carnegie Mellon University. The INSTANCES schema defines the
core set of architectural constructs common to most ADLs. The
INSTANCES schema provides definitions of:

• component instances;
• connector instances;
• interface instances (on components and connectors);
• link instances;

• subarchitectures (composite components and connectors with
internal architectures); and

• general groups.

Constructs modeling design-time aspects of a system are defined
in another schema, the STRUCTURE & TYPES schema. This schema
provides definitions of:

• components;
• connectors;
• interfaces (on components and connectors);
• links;
• subarchitectures (composite components and connectors with

internal architectures);
• general groups;
• component types;
• connector types; and
• interface types.

In addition to providing a structural model of the system at de-
sign-time, the STRUCTURE & TYPES schema also includes a generic
type system for architectural elements. Types can be assigned to
components, connectors, and interfaces, allowing an architect to
reason about similarities among elements of the same type.

Providing separate models for run-time and design-time aspects of
the system ensures that they can be extended separately. While the
models are similar, independent extensions to each schema can be

created to model additional aspects of a running system or a sys-
tem design.

In keeping with the nature of xADL 2.0, the constructs defined in
the INSTANCES and STRUCTURE & TYPES schemas are highly ge-
neric. Thus, aspects of elements like behaviors and constraints on
how elements may be arranged are not specified. Such aspects are
meant to be defined in extension schemas.

3.2.2 Implementation Mappings
A second important feature of xADL 2.0 is its support for map-
ping an architecture design onto executable code. Several ADLs
such as MetaH support or require a mapping between an architec-
ture specification and its implementation. This is essential if a
software system is to be automatically instantiated from its archi-
tecture description.

Since xADL 2.0 is not bound to a particular implementation plat-
form or language, it is impossible to know, a priori, exactly what
kinds of implementations will be mapped to architecture descrip-
tions. Obvious possibilities include Java classes and archives,
Windows DLLs, UNIX shared libraries, and CORBA compo-
nents, but making a comprehensive list is infeasible.

To address this, xADL 2.0 adopts a two-level approach. The first
level of specification is abstract, and defines where implementa-
tion data should go in an architecture description, but not what the
data should be. The xADL 2.0 ABSTRACT IMPLEMENTATION
schema extends the STRUCTURE & TYPES schema, and defines a
placeholder for implementation data. This placeholder is present
on component, connector, and interface types. As such, two ele-
ments of the same type share an implementation. The second level
of specification is concrete, defining what the implementation
data is for a particular platform or programming language. Con-
crete implementation schemas extend the ABSTRACT

IMPLEMENTATION schema. xADL 2.0 includes a JAVA

IMPLEMENTATION schema that concretely defines a mapping from
components, connectors, and interface types to Java classes.

3.2.3 Modeling Architectural Evolution and Product
Line Architectures
Modeling architectural evolution and product lines are emerging,
but important research areas. Initial work in both these areas has
focused on applying configuration management concepts to archi-
tectures [17][18]. Thus, from a modeling perspective, both areas
can be addressed by adding configuration management concepts
to an ADL.

The three most important aspects of modeling the evolution of
architectures and product lines are versions, options, and variants.
Versions record information about the evolution of architectures
and elements like components, connectors, and interfaces. Op-
tions indicate points of variation in an architecture where the
structure may vary by the inclusion or exclusion of an element or
group of elements. Variants indicate points in an architecture
where one of several alternatives may be substituted for an ele-
ment or group of elements. xADL 2.0 supports versions, options,
and variants, each in a separate schema.

Purpose Schema Features

Instances

Run-time component,
connector, interface, and
link instances; subarchi-
tectures; general groups.

Design-time
and Run-time

Models
Structure &

Types

Design-time components,
connectors, interfaces,
and links; subarchitec-
tures; general groups;
component, connector,

and interface types.

Abstract
Implementation

Placeholder for imple-
mentation data for com-
ponents, connectors, and

interfaces. Implementation
Mappings

Java
Implementation

Concrete implementation
data for Java-language

components, connectors,
and interfaces

Versions
Version graphs for com-
ponent, connector, and

interface types.

Options
Optional design-time

components, connectors,
and links.

Architectural
Evolution

Management /
Product Line
Architectures

Variants
Variant design-time com-

ponent and connector
types.

Table 2. xADL 2.0 schemas and features.

Versions

The VERSIONS schema adds versioning constructs to xADL 2.0. In
xADL 2.0, architecture element types are the versioned entities
[12]. The VERSIONS schema defines version graphs for compo-
nent, connector, and interface types.

These version graphs capture the evolution of individual elements
in an architecture, and, using the subarchitectures mechanism
defined in the STRUCTURE & TTYPES schema, can capture the evo-
lution of groups of elements or whole architectures. In keeping
with generic nature of xADL 2.0 schemas, they do not constrain
the relationship between different versions of individual ele-
ments—that they must share some behavioral characteristics or
interfaces, for instance. Such constraints may be specified in ex-
tension schemas and checked with external tools.

Options

The OPTIONS schema allows certain design-time constructs to be
labeled as optional in an architecture. It defines optional compo-
nents, connectors, and links.

Optional elements are accompanied by a “guard condition.” This
condition, whose format can be specified in an extension, is
evaluated when the architecture is instantiated. If the condition is
met, then the optional element is included in the architecture;
otherwise it is excluded.

Variants

The VARIANTS schema allows the types of certain design-time
constructs to vary in an architecture. In particular, it defines vari-
ant component and connector types.

Variant types contain a set of possible alternatives. Each alterna-
tive is a component or connector type accompanied by a guard
condition, similar to the one used in the OPTIONS schema. Guards
for variants are assumed to be mutually exclusive. The guard con-
ditions are evaluated when the architecture is instantiated. When a
guard condition is met, its associated component or connector
type is used in place of the variant type.

3.2.4 Modularity and Incrementality of the xADL 2.0
Schemas
Some of the xADL 2.0 schemas extend constructs defined in other
schemas. This introduces dependencies between them. The con-

ceptual dependencies of the various xADL 2.0 schemas are shown
in Figure 1. We have attempted to minimize these dependencies
when possible. For instance, while the VERSIONS, OPTIONS, and
VARIANTS schemas are all dependent on the STRUCTURE & TYPES
schema, they are not dependent on one another. Thus, it is possi-
ble to have an architecture description that has options and vari-
ants, but not versions.

As mentioned earlier, one drawback of using XML schemas is
that additional artificial dependencies need to be introduced to
resolve conflicts when two extensions are applied to the same
base type. We minimized the effect of this in the xADL 2.0 sche-
mas [12].

We have also made the schemas modular and incremental at the
level of individual constructs within the schemas. Where possible,
we have made individual elements optional. For instance, some
ADLs [26][32] do not use explicit connectors. While xADL 2.0
supports them, they are not required in a xADL 2.0-based archi-
tecture specification. The xADL 2.0 schemas do not constrain
what kinds of elements may be connected, so links can connect
components directly if needed. This finer-grained modularity
makes the xADL 2.0 schemas even more generic and useful as the
basis for a wide range of ADLs.

3.3 Tool Support
The third part of our infrastructure is its extensive set of flexible
tools. Tools in our infrastructure provide parsing, syntax check-
ing, and syntax-directed editing based on ADL schemas. These
tools are syntax-driven, and provide the basis for tools that per-
form semantic functions—analysis, simulation, instantiation, test-
ing, etc. Interpreting the elements defined by the XML schemas
and enforcing semantic constraints or relationships between those
elements is out of the scope of our tools.

Using XML as the basis for ADLs makes tool support especially
important. While XML documents are plain ASCII and can be
written by hand and read visually, the amount of markup and
namespace data usually present in an XML document makes it
difficult to do so. This increases the need for APIs, editors, and
viewers for documents that hide unnecessary XML details.

Each of the tools in our infrastructure is described in detail here.
A diagram showing the various tools and the relationships among
them is shown in Figure 2.

3.3.1 COTS and Open-Source XML Tools
One of the key benefits of using XML as the basis for new ADLs
is the abundance of commercial-off-the-shelf (COTS) and open-
source tools available for manipulating XML documents. These
XML tools provide the most basic level of support for editing
architecture descriptions. Two such tools that play an important
part in our framework are XML Spy [3], and Apache Xerces [4].

XML Spy

XML Spy is an integrated development environment for XML. It
has extensive support for both DTDs and XML schemas, and
provides an editor and validator for XML documents and sche-
mas. As an XML tool, it exposes many details about XML to its
users, limiting its effectiveness as an editor for architecture de-
scriptions. However, it has proven useful as an XML schema edi-
tor and validator. We used XML Spy extensively in our develop-
ment of the xADL 2.0 schemas. We expect that other users of our

Figure 1. Conceptual dependencies of xADL 2.0 schemas.
Child nodes are dependent on their parents.

xArch (Instances)

Structure & Types

Versions

Options

Variants

Abstract Implementation

Java Implementation

infrastructure will find this tool, and other XML editors like it,
useful in developing schemas as well.

Apache Xerces

Apache Xerces is an open-source programmatic library for pars-
ing and manipulating XML documents. It implements an XML
parser and validator, as well as the W3C-defined APIs SAX [30]
and DOM [24]. While we do not expect users of our infrastructure
to interact with Xerces directly, it is an important part of many of
the tools in our infrastructure because it allows our tools to inter-
act with XML documents programmatically. Without it, we would
have had to create our own XML parser and APIs, increasing our
effort substantially.

3.3.2 Data Binding Library
Our infrastructure includes a library of Java-to-XML data bind-
ings [8] that exposes an object-oriented, programmatic interface.
This interface hides nearly all details of XML from the user. Us-
ing these data bindings significantly reduces the amount of effort
needed to build a tool that can parse, understand, and manipulate
architecture documents.

Once a description of an ADL (in the form of XML schemas) is
available, syntax-directed tools can be used to create and edit
XML architecture descriptions. Syntax-directed tools hide most
XML details from their users. They use the constructs defined by
the XML schemas to direct the manipulation of documents and
help to ensure syntactic correctness within the defined language.
They provide a level of abstraction that is closer to the domain of
the architect, exposing elements defined in the language like com-
ponents, connectors, and interfaces.

Data bindings map XML elements and attributes into pieces of
code (usually objects), hiding XML details such as namespaces,
header tags, sequence ordering, etc. The objects in this library
correspond to the types defined in the XML schemas.
Manipulating the objects causes corresponding changes in the
underlying XML document. Whereas a generic XML API like
DOM exposes functions like addElement(...) and
getChildElements(...), our data binding library exposes
functions like addComponentInstance(...) and
getAllGroups(...). Internally, the library uses the DOM
implementation provided with Apache Xerces to manipulate the
underlying XML document.

Consider the following XML definition of a component, from the
xADL 2.0 STRUCTURE & TYPES Schema (namespace information
omitted for clarity):
<complexType name="Component">
 <sequence>
 <element name="description"
 type="Description"/>
 <element name="interface"
 type="Interface"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="type"
 type="XMLLink"
 minOccurs="0" maxOccurs="1"/>
 </sequence>
 <attribute name="id" type="Identifier"/>
<complexType>

For this type, the data binding library includes a Java class that
exposes the following interface:
 void setDescription(IDescription value);
 void clearDescription();

 IDescription getDescription();
 void addInterface(IInterface newInterface);
 void addInterfaces(Collection interfaces);
 void clearInterfaces();
 IInterface getInterface(String id);
 Collection getInterfaces(Collection ids);
 Collection getAllInterfaces();
 void removeInterface(IInterface interface);
 void setType(IXMLLink link);
 void clearType();
 IXMLLink getType();
 void setId(String id);
 String getId();
 void clearId();

This demonstrates that, despite having no knowledge of the se-
mantics of the ADL, the data binding library exposes functions
that are closer (in terms of their level of abstraction) to the con-
cepts relevant to a software architect. This makes building archi-
tecture tools with the data binding library more intuitive than
building them with an XML tool like Xerces.

3.3.3 Apigen
If the data bindings need to be rewritten every time a schema is
added, changed, or removed, then the benefit of having them is
negated. The syntax information present in the ADL schemas is
enough to generate the data bindings automatically. Several pro-
jects already generate data bindings for DTD-based languages, but
none yet exist that can adequately deal with XML schemas (sev-
eral projects are in very early ‘alpha’ stages of development). To
remedy this, we built a tool called ‘apigen’ [13] (short for “API
generator”) that can automatically generate the Java data binding
library, described above, for ADL schemas.

Apigen reduces overall tool-building effort by providing the data
binding library to tool builders automatically. When an ADL’s
schemas are changed, tool builders simply re-run apigen over the
modified set of schemas to generate a new data binding library. Of
course, bindings for elements that did not change will be pre-

Figure 2. Infrastructure tools and their relationships.

generates

XML Spy
COTS XML Development

Environment

uses

wraps

uses

Apache Xerces
Java XML Parser and
DOM Implementation

xArchADT
Event-oriented Interface to

ADL Documents

ArchEdit
Visual Syntax-directed
Tree-based ADL Editor

Apigen
Java-to-XML data binding

generator.

Data Binding Libraries
Object-oriented Interface

to ADL Documents

XML Schemas

edits parses

uses

served in the library, minimizing the impact on tools that use the
library.

Apigen is not a generic data binding generator; it does not support
the full XML schema language. However, it supports a large set of
schema features, and so far has been sufficient to generate data
bindings for all the xADL 2.0 schemas as well as schemas written
by third parties.

3.3.4 xArchADT
The data binding library provides a traditional object-oriented
interface to edit architecture descriptions. This requires the li-
brary’s callers to maintain many direct object references. In gen-
eral, distributed and event-based systems assume that components
do not share an address space, and therefore cannot contain object
references across components. Because of this, using such a li-
brary as an independent component in a distributed or event-based
system is difficult.

To address this, we have built a wrapper, called ‘xArchADT,’ for
the data-binding library that provides an event-based interface
instead of an object-oriented one. Instead of procedure calls, xAr-
chADT is accessed via asynchronous events. It uses reified first-
class object references, rather than direct pointers, to refer to ele-
ments in xADL 2.0 documents. That is, xArchADT assigns identi-
fiers to xADL 2.0 elements and those identifiers are used to refer
to the elements. When the underlying architecture description is
modified by one tool, xArchADT emits an event informing all
listening tools of the change. This gives the data binding library
the added property of loose coupling.

Like the data binding library itself, this component is highly flexi-
ble. xArchADT uses Java’s reflection capabilities to adapt to
changes in the data binding library automatically. That is, if the
library is regenerated by apigen, xArchADT will work without
modification.

3.3.5 ArchEdit
The data binding library and xArchADT expose different pro-
grammatic interfaces for manipulating architecture descriptions.
Our infrastructure also includes a user interface-based tool called
ArchEdit. A screenshot of this tool is shown in Figure 3. Arch-
Edit depicts an architecture description graphically in a tree for-
mat, where each node can be expanded, collapsed, or edited. This
is similar to many visual XML editors, except ArchEdit hides the
XML details of the document from the user. The ADL’s XML
schemas direct the structure of the displayed tree view, making the

structure of the XML document and the structure of the displayed
tree identical. This gives architects direct access to architecture
descriptions without abstracting away details of the architecture.

ArchEdit is syntax-driven—it does not understand the semantics
of the displayed elements. It does not enforce stylistic constraints
or other rules on the architecture description that cannot be speci-
fied in XML. The advantage of having such a tool is that it builds
its view and interface dynamically from the XML schemas used to
define the ADL. Therefore, it does not need to be modified when
schemas are added, modified, or removed. This flexibility is valu-
able because it gives architects a simple graphical editor for ADL
documents automatically, even if the new ADL features have
recently been added. The cost of this flexibility is that ArchEdit
cannot display the structure of the software architecture in an
intuitive way—as a box-and-arrow diagram, for instance.

ArchEdit is an event-based software component and accesses
architecture descriptions through xArchADT. Changes to the
architecture description made via xArchADT by ArchEdit or other
tools are immediately reflected in the ArchEdit user interface.

3.3.6 Other Tools
Other tools, such as editors and analysis tools, can be integrated
into this infrastructure by using the data binding library (for pro-
cedure-call based interaction) or xArchADT (for event-based
interaction). A separate project, ArchStudio 3 [5], uses xAr-
chADT as a data store for architecture descriptions and provides a
framework for integrating additional tools that communicate using
events.

4. EXPERIENCES
Our infrastructure has demonstrated its effectiveness in a number
of problem domains. In this section, we highlight three experi-
ences that each demonstrate a different strength of the infrastruc-
ture. First, we show how our infrastructure supported the model-
ing and simulation of the architecture of a large military system—
demonstrating the scalability of the infrastructure. Second, we
show how our infrastructure supported the development of an
ADL now used in architectural modeling experiments for space-
craft systems—demonstrating the adaptability of the infrastructure
to new architectural domains with unique modeling requirements.
Third, we show how our infrastructure supported the development
of ADLs for Koala [32] and Mae [18], two representations used to
model product line architectures—demonstrating the extensibility
of the XML schemas and tools in our infrastructure. These three

Figure 3. ArchEdit screenshot.

Tree-based
representation

of ADL
document.

Editors for
element and

attribute
values.

Drag-and-drop
interface

assists with
making XML
links between

elements.

experiences demonstrate how the different aspects of our infra-
structure (XML-based extensibility, a base set of schemas, and
flexible tool support) contribute to its effective use.

4.1 AWACS
To demonstrate the scalability of our infrastructure, we used it to
model the AWACS aircraft’s [44] software architecture in an
XML-based ADL. This architecture, consisting of several hundred
components and connectors, was modeled using a subset of the
xADL 2.0 schemas. We then used this model as the basis for an
architecture-driven simulation of the AWACS software system.

Because of the large size of the architecture, and its high internal
regularity (similar elements repeated over and over), we built the
initial AWACS description programmatically with a small (1000-
line) program that calls our infrastructure’s data binding library.
The result was an architecture document consisting of approxi-
mately 10,000 lines of XML. Obviously, creating such a large
description by hand or in a GUI-based editor would have been
infeasible, further demonstrating the value of the data binding
library. The AWACS description describes the components, con-
nectors, interfaces, and links in the architecture, along with com-
ponent, connector, and interface types. We validated this descrip-
tion against the xADL 2.0 schemas using XML Spy and visual-
ized it with ArchEdit. We used ArchEdit to inspect the architec-
ture and make further improvements until the model was accurate.

We also built an AWACS simulator with our infrastructure to
visualize the interactions among the components. We created
implementations for each component type and connector type in
Java. Using xArchADT to read the architecture description, a
short bootstrap program instantiates and connects the elements.
To visualize the simulation, we added an extension to Microsoft
Visio that allows Visio to display events on a graphical architec-
ture diagram. A separate project has extended Visio further to
render and lay out architecture diagrams automatically from
xADL 2.0 descriptions. A screenshot of the simulator is shown in
Figure 4. This shows that our infrastructure tools are useful in
high-value, semantically oriented tools like simulators.

In addition to scalability, this experience demonstrates several
additional benefits of our infrastructure. First, it shows that our
base schemas have effective modeling capabilities by themselves,
as no extensions were needed to model the AWACS architecture.
Second, it shows the flexibility of the infrastructure’s tool sup-
port, as we were able to use xArchADT (and, by extension, our
data binding library) to create the architecture description and use
it as the basis for our simulator. Finally, it shows the value of the
user-interface based tools in our infrastructure, as we were able to
use XML Spy to validate our description and ArchEdit to refine
it.

4.2 JPL
As a demonstration of the adaptability of the infrastructure to a
new domain with its own unique architectural requirements, we
describe our experience with the Jet Propulsion Laboratory (JPL).
JPL has adopted our infrastructure to support its Mission Data
System (MDS) group, which is experimenting with modeling
spacecraft software architectures. This domain induces new mod-
eling needs, particularly a unique notion of component interfaces.
JPL has built extensions to the xADL 2.0 base schemas to repre-
sent these interfaces, and has used apigen to generate data bind-
ings for these new schemas. xADL 2.0’s separation of run-time
and design-time models has also been especially important for
JPL, since run-time software updates of spacecraft software will
be a priority for them. JPL has also created mappings between
their XML-based ADL, built in our framework, and other proprie-
tary notations that can be used to drive C++ code generators and
software configuration engines already in use at JPL.

This experience verifies that our infrastructure’s genericity and its
extensibility mechanisms are useful in as-yet unexplored domains,
especially with regard to the xADL 2.0 base schemas. JPL was
able to reuse the xADL 2.0 base schemas, creating small new
schemas to model domain-specific details of spacecraft software.
JPL’s use of apigen and the associated data binding library to
manipulate architecture descriptions further shows the value of
our infrastructure’s tool support. Finally, their mapping of archi-
tecture descriptions to other representations shows the adaptabil-
ity of our approach to other, unforeseen situations.

4.3 Mappings to Koala & Mae
To demonstrate our infrastructure’s ability to capture concepts
from an emerging research area and add tool support for those
concepts efficiently, we have created schemas that add the unique
modeling constructs of Koala [32] and Mae [18] to our base
xADL 2.0 schemas [14]. Koala and Mae are two representation
formats for capturing product line architectures. Each product line
consists of multiple variants of a software architecture. These
variants may be different configurations of the system for use in
different environments, or may represent different stages of the
evolution of an architecture over time. The xADL 2.0 schemas
already provide basic support for product line architectures with
the VERSIONS, OPTIONS, and VARIANTS schemas. However, both
Koala and Mae have unique modeling characteristics that differ
from those in the xADL 2.0 schemas and from each other.

There are several differences between Koala and xADL 2.0. First,
Koala does not support the notion of explicit connectors or ver-
sioning. Next, Koala has two constructs not present in xADL 2.0:
diversity interfaces and switches. A diversity interface, represent-
ing a point of variation in an architecture, is required to be present

Figure 4. AWACS simulator screenshot with detail callout.

on variant components and must be an ‘out’ interface. A switch is
an explicit construct applied at a variation point that creates the
connection to the variant component that will be used.

The Mae representation is somewhat closer to xADL 2.0. Two key
differences exist between xADL 2.0 and Mae. First, component
types in Mae are augmented with a string describing their archi-
tectural style. Second, component types in Mae also have a sub-
type relation and a reference to their supertype.

We addressed these differences using several aspects of our infra-
structure. xADL 2.0’s flexibility at the level of individual ele-
ments was useful several times. For instance, Koala lacks support
for explicit connectors, so we simply excluded connectors from
our mapping since xADL 2.0 does not require them, demonstrat-
ing the modularity of the xADL 2.0 schemas at the level of indi-
vidual elements. When new constructs were required, like Koala’s
diversity interfaces and Mae’s subtypes, we created simple sche-
mas that added these entities to xADL 2.0.

This experience further demonstrates the effectiveness of the
XML-based extensibility mechanism we have chosen for our in-
frastructure. Consider the following schema, used to add Koala-
style diversity interfaces to xADL 2.0 (some tags and namespace
information omitted for clarity):
<schema xmlns="diversity.xsd">
 <complexType name="DiversityInterface">
 <complexContent>
 <restriction base="Interface">
 <sequence>
 ...
 <!--This is the only element
 that changes-->
 <element name="direction"
 type="Direction"
 minOccurs="0" maxOccurs="1"
 fixed="out"/>
 ...
 </sequence>
 <attribute name="id"
 type="Identifier"/>
 </restriction>
 </complexContent>
 </complexType>

 <complexType name="DiversityComponentType">
 <complexContent>
 <extension base=" ComponentType">
 <sequence>
 <element name="diversity"
 type="DiversityInterface"
 minOccurs="1" maxOccurs="1"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
</schema>

This schema subtypes the definition of an interface to create a
diversity interface, and extends the definition of a component to
add such an interface. Note the relative simplicity of this schema;
other schemas (shown in full in [14]) are also simple and straight-
forward. For the Koala and Mae mappings, we successfully exer-
cised the full gamut of XML schema-based extensibility tech-
niques (creation of new elements, extension of existing elements,
restriction of elements, etc.)

This experience also reinforces the effectiveness of the infrastruc-
ture tools. We used XML Spy to verify and create our extension
schemas and apigen to create a new data binding library that sup-

ports them. ArchEdit was able to support these schemas automati-
cally. As such, after writing the short extension schemas required
to map Koala and Mae into our infrastructure, our tools provided
parsing, syntax checking, and GUI editing abilities automatically.

5. RELATED WORK
Our infrastructure has its roots in several key areas of research and
practice. First, research on traditional and domain-specific ADLs
indicates the need for new representations and features and the
ability to create them efficiently. Second, early research on XML-
based ADLs showed that XML could be effectively used to de-
velop ADLs. Finally, UML is a heavyweight, extensible design
notation that represents a different way of modeling software sys-
tems. Our infrastructure is described in these contexts here.

5.1 Traditional and Domain-Specific ADLs
As noted in Section 2, traditional ADLs (and the wide prolifera-
tion thereof) are the inspiration for this work. Additional motiva-
tion comes from domain-specific software architecture (DSSA)
research, which has shown that architecture description languages
tailored to specific domains can increase automation and reduce
effort in the software development process. The amount of reuse
and abstraction possible in a single, well understood domain, such
as avionics [43], far exceeds that possible in the general case.

5.2 XML-based ADLs
XML-based ADLs have been investigated in a limited fashion
over the past few years [21][33]. These ADLs are able to take
advantage of XML’s extensive off-the-shelf tool support., but
their reliance on DTDs prevents easy modular extension. The
creation of a new ADL requires the development of a “hybrid
DTD” that describes how to compose the component DTDs that
define the language.

xAcme [39] is a more recent XML-based ADL that represents
Acme concepts in a set of XML schemas, based on the xArch
core. This ADL is another example of a successful use of XML to
develop an ADL. However, it is simply another example of an
ADL, and is not part of an infrastructure for experimenting with
new ADLs or ADL features—its associated tool set is not meant
to adapt to non-xAcme ADLs.

5.3 UML
Work done with the Unified Modeling Language (UML) [38] to
model systems is closely related to, but distinct from, the
contributions of our infrastructure. First, and most importantly,
the intents of our infrastructure and UML (plus its associated
tools) are quite different. UML is a rather heavyweight design
notation, modeling the full structure and semantics of a software
system in seven separate views. In contrast, our infrastructure is
geared toward lightweight experimentation and rapid extension,
allowing architects to choose and develop constructs that fit a
particular need or interest with generic tools and base schemas to
support them.

A second distinction can be made between the extensibility
mechanisms supported by UML and our infrastructure. Several
papers have analyzed UML’s suitability as an ADL [36][37][19].
These papers have revealed that raw UML is well-suited to
modeling some aspects of software architectures, but fails in
modeling others. Therefore, approaches to representing
architectures in UML require extensions to UML. An early
approach [37] extends UML via changes to the UML meta-model,

UML via changes to the UML meta-model, the model in which
UML itself is defined. This approach allows arbitrary extensions
and changes to UML and the resulting languages can be mapped
to XMI, an XML-based language. However, this approach renders
UML tools incompatible with the resulting language. A later ap-
proach by Robbins et. al. [36] extends existing UML elements
with UML’s built-in extensibility mechanisms, namely stereo-
types, tagged values, and constraints. These extension mecha-
nisms are part of UML and are well-supported by UML tools.
Robbins and Medvidovic found, however, that this is a less than
ideal approach because it cannot fully represent all aspects of
ADLs. Our infrastructure uses XML to provide extensibility com-
parable to editing the UML meta-model along with tools that
support that extensibility.

6. CONCLUSIONS
This paper contributes an infrastructure for creating and extending
architecture description languages. The infrastructure dramatically
reduces the amount of effort involved in experimenting with and
developing new architectural concepts. This reduction results
from the three parts of our infrastructure: an XML-based extensi-
bility mechanism, a set of generic base schemas, and a set of
flexible tools. It eliminates the need to build tools like parsers,
syntax checkers, and data bindings for ADLs, allowing research-
ers to spend more time on building high-value tools that focus on
addressing open research issues.

Our infrastructure has demonstrated its effectiveness in a number
of projects. We have demonstrated the scalability of our infra-
structure and the flexibility of our tools by modeling and simulat-
ing the AWACS software architecture. The adaptability of our
infrastructure to a new, unexplored domain (spacecraft software)
and the effectiveness of our generic xADL 2.0 schemas have been
demonstrated by work done at JPL. We have demonstrated that
our infrastructure can be used to capture aspects of an emerging
research area (product line architectures) with Koala and Mae.
Our tools provided a parser, data bindings, and a GUI editor for
those aspects automatically.

In the future, we plan to experiment with integrating more tools
into our infrastructure to add useful features. The xlinkit [31] tool
can potentially be used to express and check constraints on XML
links in xADL 2.0 documents. The SmartTools [6] tool set can
potentially provide an XML-based language like xADL 2.0 with
alternative editors and semantic analysis tools.

For our future research goals, we plan to expand the xADL 2.0
schemas to include new modeling constructs, particularly those
that will support the specification of distributed and dynamic
architectures. We are also adding new tools to our infrastructure,
including ArchDiff, a tool for determining the difference between
two architecture descriptions, and a selector that can select an
architectural variant in a product line architecture description. The
ultimate goal of our work with this infrastructure is to investigate
issues related to distributed, dynamic software architectures, as
well as applying architecture-based development to areas of the
lifecycle such as deployment and maintenance.

7. URL
More information about our infrastructure can be found here:

http://www.isr.uci.edu/projects/xarchuci/

8. ACKNOWLEDGMENTS
The authors would like to acknowledge and thank our industrial
contacts, particularly Will Tracz at Lockheed Martin and Nicolas
Rouquette and Vanessa D. Johnson at JPL. We would also like to
like to acknowledge the contributions to this work of David
Rosenblum, Yuzo Kanomata, Jie Ren, Girish Suryanarayana,
Joachim Feise, Kari Nies, Christopher van der Westhuizen, and
Ping Chen at UC Irvine. Finally, we would like to thank David
Garlan and Bradley Schmerl at Carnegie Mellon University for
their collaboration on the development of xArch.

Effort sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air Force
Materiel Command, USAF, under agreement number F30602-00-
2-0599. Effort also partially funded by the National Science
Foundation under grant number CCR-0093489. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or im-
plied, of the Defense Advanced Research Projects Agency
(DARPA), the Air Force Laboratory, or the U.S. Government.

9. REFERENCES
[1] R. Allen and D. Garlan. A Formal Basis for Architectural

Connection. ACM Trans. Software Eng. and Methodology,
vol. 6, no. 3, pp. 213-249, July 1997.

[2] M. Altheim, F. Boumphrey, S. Dooley, S. McCarron, S.
Schnitzenbaumer, and T. Wugofski., eds. Modularization of
XHTML. URL: http://www.w3.org/TR/xhtml-
modularization/.

[3] Altova GmbH. XML Spy. URL: http://www.xmlspy.com/.
[4] Apache Group. Xerces Java Parser Readme. URL:

http://xml.apache.org/xerces-j/index.html.
[5] ArchStudio 3. URL:

http://www.isr.uci.edu/projects/archstudio/
[6] I. Attali, C. Courbis, P. Degenne, A. Fau, D. Parigot, and C.

Pasquier. SmartTools: a Generator of Interactive Environ-
ments Tools. In Proceedings of the International Conference
on Compiler Construction CC'01, volume 2027, Genova, It-
aly, April 2001.

[7] P. Binns, M. Engelhart, M. Jackson, and S. Vestal. Domain-
Specific Software Architectures for Guidance, Navigation,
and Control. International Journal of Software Engineering
and Knowledge Engineering, vol. 6, no. 2, 1996.

[8] R. Bourret. XML Data Binding Resources. URL:
http://www.rpbourret.com/xml/XMLDataBinding.htm.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.
Extensible Markup Language (XML) 1.0 (Second Edition).
W3C Recommendation 6 October 2000.

[10] C. Christensen and C. Shaw, eds. Proc. of the Extensible
Languages Symposium, Boston, May 13, 1969.

[11] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley 2001.

[12] E. Dashofy, A. van der Hoek, and R. N. Taylor. A Highly-
Extensible, XML-Based Architecture Description Language.
In Proceedings of the Working IEEE/IFIP Conference on

Software Architectures (WICSA 2001), Amsterdam, Nether-
lands.

[13] E. Dashofy. Issues in Generating Data Bindings for an XML
Schema-Based Language. In Proceedings of the Workshop
on XML Technologies and Software Engineering
(XSE2001), Toronto, ONT, Canada.

[14] E. Dashofy and A. van der Hoek. Representing Product
Family Architectures in an Extensible Architecture Descrip-
tion Language. In Proc. of the Int’l Workshop on Product
Family Engineering (PFE-4), Bilbao, Spain, October 2001.

[15] C.A.R. Hoare, Communicating Sequential Processes. Pren-
tice Hall, 1985.

[16] A. van der Hoek, D. Heimbigner, and A. L. Wolf. Investigat-
ing the Applicability of Architecture Description in Configu-
ration Management and Software Deployment. Technical
Report CU-CS-862-98, Department of Computer Science,
University of Colorado, November 1998.

[17] A. van der Hoek, D. Heimbigner, and A. L. Wolf. Software
Architecture, Configuration Management, and Configurable
Distributed Systems: A Ménage a Trois. Technical Report
CU-CS-862-98, Department of Computer Science, Univer-
sity of Colorado, 1998.

[18] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and N.
Medvidovic. Taming Architectural Evolution. In Proceed-
ings of the Ninth ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE-9), Vienna, Austria,
September 2001.

[19] C. Hofmeister, R. L. Nord, and D. Soni. Describing Software
Architecture with UML. In Proceedings of Working IFIP
Conference on Software Architecture, pages 145-160. Klu-
wer Academic Publishers, February 1999.

[20] International Organization for Standardization. Information
processing—Text and office systems—Standard Generalized
Markup Language (SGML). ISO 8879:1986. 154pp.

[21] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic and
R. Taylor. xADL: Enabling Architecture-Centric Tool Inte-
gration with XML. Proceedings of the 34th Annual Hawaii
International Conference on System Sciences (HICSS-34),
2001.

[22] J. Kramer and J. Magee. The Evolving Philosophers Prob-
lem: Dynamic Change Management. IEEE Trans. on Soft-
ware Eng., SE-16, 11 (1990), pp 1293-1306.

[23] O. Lassila and R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification. W3C Recommenda-
tion 22 February 1999.

[24] Le Hors, A., ed. Document Object Model (DOM) Level 3
Core Specification. URL:
htttp://www.w3.org/TR/2001/WDDOM-Level-3-Core-
20010126/.

[25] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D.
Bryan, and W. Mann. Specification and Analysis of System
Architecture Using Rapide. IEEE Trans. Software Eng., vol.
21, no. 4, pp. 336-355, Apr. 1995.

[26] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying
Distributed Software Architectures, Proc. Fifth European
Software Eng. Conf. (ESEC ’95), Sept. 1995.

[27] J. Magee and J. Kramer. Concurrency: State Models & Java
Programs. Wiley, 1999.

[28] N. Medvidovic, D.S. Rosenblum, and R.N. Taylor. A Lan-
guage and Environment for Architecture-Based Software
Development and Evolution. Proc. 21st Int’l Conf. Software
Eng. (ICSE ’99), pp. 44-53, May 1999.

[29] N. Medvidovic and R. Taylor. A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering,
vol. 26, no. 1, pp. 70-93, January 2000.

[30] Megginson Technologies. SAX 2.0: The Simple API for
XML. URL: http://www.megginson.com/SAX/.

[31] C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein.
xlinkit: a Consistency Checking and Smart Link Generation
Service. To appear in ACM Transactions on Internet Tech-
nology (TOIT). URL: http://www.xlinkit.com/

[32] R. van Ommering, F. van der Linden, J. Kramer, and J.
Magee. The Koala Component Model for Consumer Elec-
tronics Software. IEEE Computer 33(3): 78-85 (2000).

[33] Open Group. Architecture Description Markup Language
(ADML), Version 1. URL:
http://www.opengroup.org/onlinepubs/009009899/.

[34] P. Oreizy, N. Medvidovic, and R. Taylor. Architecture-Based
Runtime Software Evolution. In Proceedings of the Interna-
tional Conference on Software Engineering 1998 (ICSE’98),
pages 177-186, Kyoto, Japan, April 19-25, 1998.

[35] D. E. Perry and A. L. Wolf. Foundations for the Study of
Software Architectures. ACM SIGSOFT Software Engineer-
ing Notes, pages 40-52, October 1992.

[36] J. Robbins, N. Medvidovic, D. Redmiles, D. Rosenblum.
Integrating Architecture Description Languages with a
Standard Design Method. In Proc. 20th International Confer-
ence on Software Engineering (ICSE’98), Kyoto, Japan.

[37] J. Robbins, D. Redmiles, D. Rosenblum. Modeling C2 in the
Unified Modeling Language. In Proc. California Software
Symposium 1997.

[38] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1998.

[39] B. Schmerl. xAcme: CMU Acme Extensions to xArch. URL:
http://www-2.cs.cmu.edu/~acme/pub/xAcme/guide.pdf.

[40] Stephen A. Schuman, ed. Proceedings of the International
Symposium on Extensible Languages, Grenoble, France,
September 6-8, 1971.

[41] R. N. Taylor et. al. A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions on
Software Engineering, June 1996.

[42] H. Thompson, D. Beech, M. Maloney and N. Mendelsohn,
eds. XML Schema Part 1: Structures. URL:
http://www.w3.org/TR/xmlschema-1/.

[43] W. Tracz and L. Coglianese. An Avionics Domain-Specific
Software Architecture. Crosstalk, October 1992, pp. 22-25.

[44] U.S. Air Force, AWACS E-3 Sentry Fact Sheet. URL:
http://www.af.mil/news/factsheets/E_3_Sentry__AWACS_.h
tml.

