
ABSTRACT
Software architecture research focuses on models of software
architectures as specified in architecture description
languages (ADLs). As research progresses in specific areas of
software architectures, more and more architectural
information is created. Ideally, this information can be stored
in the model. An extensible modeling language is crucial to
experimenting with and building tools for novel modeling
constructs that arise from evolving research. Traditional
ADLs typically support a small set of modeling constructs
very well, but adapt to others poorly. XML provides an ideal
platform upon which to develop an extensible modeling
language for software architectures. Previous XML-based
ADLs successfully leveraged XML’s large base of off-the-shelf
tool support, but did not take advantage of its extensibility. To
give software architecture researchers more freedom to
explore new possibilities and modeling techniques while
maximizing reuse of tools and modeling constructs, we have
developed xADL 2.0, a highly extensible XML-based ADL.
xADL 2.0 supports run-time and design time modeling,
architecture configuration management, and model-based
system instantiation. Additionally, xADL 2.0 has a set of
extensible infrastructure tools that support the creation,
manipulation, and sharing of xADL 2.0 documents.

1. INTRODUCTION

One of the key goals of software architecture research is
understanding and manipulating a system at a higher level of
granularity than modules or lines-of code. Generally, software
architectures are composed of components, the loci of
computation, connectors, the loci of communication, and
configurations, constraints on the arrangement and behavior
of components and connectors [8,19]. The architecture of a
software system is a model, or abstraction, of that system.
Software architecture researchers need extensible, flexible
architecture description languages (ADLs) and equally

flexible and extensible tools to represent these models and
experiment with new models or modeling techniques.

To these ends, we have developed xADL 2.0, a highly-
extensible XML-based ADL. xADL 2.0 is based on xArch, a
core representation for basic architectural elements that uses
the XML schema extension method (see Section 2.2) for
extending this core. xArch was jointly developed by the
University of California, Irvine and Carnegie Mellon
University to provide a basis for creating new ADLs and ADL
features easily. xADL 2.0 was developed in parallel with
xArch. In addition to the core xArch elements, xADL 2.0
provides support for architectural prescription (the “recipe”
for how an architecture should be instantiated into a running
system), a types-and-instances model, architecture-level
configuration management concepts such as versions, options,
and variants, and a mapping from types onto implementations
of those types. We plan to further extend xADL 2.0 in the
future as our research on software architecture progresses.
While xADL 2.0 is not the first XML-based ADL, it offers
some novel features.

First, xADL 2.0 is highly extensible. Since xADL 2.0
inherits XML’s schema-based extensibility mechanism, users
can effectively and independently extend it with features that
support their particular needs. Specifically, users can write
extensions that modify and add to the existing elements of
xADL 2.0 in a modular fashion. Moreover, since xADL 2.0 is
defined as a set of extensions to xArch, undesired features of
xADL 2.0 can be left out of any ADL that is built with it.

Second, xADL 2.0 is supported by tools that provide
much-needed infrastructure for storing, manipulating, and
sharing xADL 2.0 specifications. This set of tools completely
insulates end-users from the peculiarities of XML and the
internal structure of xADL 2.0 documents. The only users who
need to be aware of the XML-nature of xADL 2.0 are those
who extend it with their own schemas.

Third, xADL makes a clear distinction between
architectural prescription (the design-time template that is
used for instantiating the architecture) and architectural
description (which describes the run-time state of the system).
Whereas existing ADLs typically assume that their models are
applicable both at design-time and run-time, xADL 2.0
logically separates the two. Extensions that make sense at
design-time may not make sense at run-time and vice-versa.

Fourth, xADL 2.0 provides a general set of extensions that
users may or may not adopt. For example, it incorporates
support for architecture-level configuration management and
mappings from components and connectors onto Java
implementations. These features are generally not supported
by architecture description languages.

Effort partially sponsored by the Defense Advanced Research Projects
Agency, and Rome Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-97-2-0021. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Rome Laboratory or the U.S.
Government.

A Highly-Extensible, XML-Based Architecture Description Language

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, U.S.A.

Eric M. Dashofy
edashofy@ics.uci.edu

André van der Hoek
andre@ics.uci.edu

Richard N. Taylor
taylor@ics.uci.edu

Combined, all of these features provide a solid
foundation for tool-building and research experimentation
in software architectures. xADL 2.0 and its associated
tools can be used to incrementally develop new or variant
ADLs instead of “reinventing the wheel” by building a
new ADL from scratch. In particular, xADL 2.0 can
represent architectures in multiple architectural styles,
provided appropriate extensions are made. This
extensibility makes it seem as if xADL 2.0 is just a
representation format. However, it satisfies all the
requirements to be an ADL, as outlined in [16].
Therefore, xADL 2.0 can be considered both a
representation format and an ADL; however, we will
discuss it as an ADL for the remainder of this paper.

2. BACKGROUND AND RELATED WORK

2.1. First-Generation ADLs
Architecture description languages such as Wright

[1], Rapide [13] and Darwin [14] represent the first
generation of ADLs. A more complete review of ADLs is
provided in [16]. This group of ADLs is characterized by
proprietary language syntax, supported by programming-
language style tools (compilers, static and dynamic
analysis tools, and virtual machines or simulators).

Wright is an architecture description language (ADL)
whose particular focus is on formally specifying
protocols of interaction among components in an
architecture. To this end, it employs a subset of
communicating sequential processes (CSP) [9]. Given an
architectural specification, Wright is able to determine the
interaction characteristics of components communicating
through any given connector, e.g., whether they will
deadlock.

Rapide is an ADL whose accompanying toolset
provides extensive modeling, analysis, simulation, and
code generation capabilities. Rapide’s strengths include
the ability to create executable specifications that can be
dynamically analyzed and a strong notion of event-based
communication.

Darwin is an ADL with precise semantics based on
the pi calculus [14]. Darwin’s strengths include the ability
to model hierarchically constructed systems and systems
that are distributed across many machines. Darwin also
has limited support for dynamism, via the definition of
structures that can be dynamically instantiated.

2.2. XML, DTDs, and XML Schemas
Before continuing, it is useful to have a short

discussion of XML and XML schemas because of their
relative youth in the world of software architecture
research. Since 1996, the World Wide Web Consortium
(W3C) has been working on XML, the eXtensible
Markup Language [4]. “XML” refers to a family of
technologies surrounding the XML 1.0 specification. This
specification describes a method for marking up text
documents with information about various parts of the
text delimited by “tags”.

In XML, fragments of text can be delimited with
specially formatted start and end tags. The start tag of an
element may have additional attributes that provide
further information about the tagged text. The original
XML 1.0 specification defines a special part of the XML
language called the document type definition (DTD). By

writing DTDs, XML authors can define the syntax of a
document in terms of what elements and attributes are
allowed. An extension to XML called XML
namespaces [5] allows XML document authors to import
elements and attributes from many DTDs.

While XML was initially intended to be used as a
text-markup method, it has quickly grown into a method
for encoding data, serializing objects, and managing
metadata. The limited expressiveness of DTDs makes
them insufficient for many of these purposes, so the W3C
began work on XML Schema [6], a more expressive DTD
replacement. The primary contribution of XML schemas
is a type system for XML that supports simple and
compound types, plus a method for type inheritance. Type
inheritance is absolutely crucial to creating extensible
XML syntaxes. It allows users to define XML types that
are composed of attributes and elements, and later define
extensions to those types that add (or remove) attributes
and elements from those base types, similar to subtyping
in an object-oriented programming language. The type
extension can be defined in a separate schema from the
base type, allowing developers to extend other
developers’ schemas without directly interacting.

2.3. XML-Based ADLs
ADLs like xADL 1.1 [11] and ADML [21] are based

on XML, and defined in XML DTDs. Defining an ADL
in XML greatly increases the tool support for that ADL,
as there are many COTS tools available for creating,
editing, parsing, validating, storing, and manipulating
XML documents. This eliminates or reduces the need for
custom syntax checkers and compilers. Moreover,
programmatic support for XML is provided in the form of
APIs like DOM, SAX, and JDOM. More thorough
rationale for building ADLs in XML is given in [20].

xADL 1.1, the predecessor of xADL 2.0 developed at
the University of California, Irvine, is an architecture
description language and interchange format. Its strengths
include support for architectural dynamism, an
architecture-based type system, and mappings from
element types to implementations. A xADL 1.1
description can be used to describe how a software system
should be instantiated.

ADML, developed by MCC and submitted as a
standard to the Open Group, is a minimal extension to the
Acme [7] representation for software architectures.
ADML is currently defined in a DTD available from the
Open Group [17]. ADML elements can only be extended
through the addition of properties—the set of core
elements in ADML is fixed. Properties are typed, and can
have compound values. Meta-properties in the ADML
description of a system serve as the “metalanguage”
defining allowable extensions.

2.4. xArch
xArch, jointly developed by Carnegie Mellon

University and the University of California, Irvine, is an
XML-based representation for building ADLs. It consists
of a core of basic architectural elements, defined in an
XML schema called the “instances” schema. The xArch
instances schema provides definitions for the following
elements typically found in an ADL:
• Component, connector, interface, and link instances;
• Subarchitectures, for specifying hierarchically com-

posed component and connector instances; and
• Groups, allowing the combination of basic elements

into logical aggregations such that they can be identi-
fied as a single entity by architectural tools.

The definitions of these elements are semantically
neutral: no particular behavior is attached. Constraints on
the arrangement and workings of the various architectural
elements are specified in xArch extensions (as xADL 2.0
has done).

xArch can be extended by writing new XML schemas
that augment the core xArch schema with additional
information about the architecture by modifying existing
tags and attributes or adding new ones. This allows
architecture researchers to add their own modeling
constructs to xArch. In addition to the many XML
schema-aware tools available off-the-shelf, several tools
exist to specifically assist xArch users in creating their
own extensions; these are described in Section 8.

3. MOTIVATION

Our development of xADL 2.0 was spurred by our
desire to carry out new software architecture research in
configuration management, dynamism, distribution, and
events. In doing so, we wished to adopt an existing ADL
as the basis for our experimentation with features suitable
for rapid change and research exploration. This
continuous evolution requires an evolvable ADL and
toolset.

We surveyed the landscape of existing ADLs, but
were unable to find one with the necessary flexibility and
tool-supported extension mechanism. To our surprise, this
included existing XML-based ADLs, which failed to take
advantage of XML’s extensibility mechanism. For this
reason, we chose to cooperate in the construction of
xArch and to use xArch in the development of xADL 2.0

3.1. Extending a First-Generation ADL
We first considered building xADL 2.0 by modifying

an existing first-generation ADL. However, more often
than not, first-generation ADLs like Darwin, Rapide and
Wright share several salient features. First, they are
usually custom-tailored to support only one “killer”
feature that distinguishes them from other ADLs (e.g.
Darwin’s support for distribution, Rapide’s executable
specifications, Wright’s protocol specifications). Second,
they are supported by a proprietary toolset, usually
authored entirely by the original ADL developers.

These problems arise because first-generation ADLs
and their tools are mostly geared to support monolithic
languages. That is, the entire ADL and all its features are
defined inextricably in one place. This has several
disadvantages. First, it can reduce understandability,
because architects must become familiar with the whole
ADL instead of just the necessary parts. Second, it can
increase the model size greatly. Our previous work with
architectures has shown promise in an approach where the
architectural model of a system is maintained alongside
the system itself [11]. This becomes problematic on
resource-constrained devices. The ability to pick-and-
choose only essential modeling constructs is key in
maintaining architectural models on resource-constrained
platforms. For these reasons, we wanted xADL 2.0 to be a

more modular core-plus-extensions model, eventually
facilitated by XML schema’s extensibility mechanism.

A final problem with first-generation ADLs is that
neither the language nor the tools are designed to be
directly extensible. Because no modularly extensible
meta-language is provided in these ADLs, their tools
require significant changes to support language
extensions.

3.2. Extending an XML-based ADL
XML-based ADLs like xADL 1.1 and ADML

showed much more promise on the extensibility front.
However, these languages offer limited possibilities for
independent extension because they are based on XML
DTDs. Elements in a DTD cannot be extended by another
DTD - the original DTD must be rewritten or augmented
with another, unrelated DTD. This closely mirrors the
extensibility problems with first-generation ADLs.

ADML has a well-defined, but limited extension
mechanism. Borrowed from Acme [7], this mechanism is
based on typed name-value pair properties. The core set
of elements in ADML cannot be changed. This property-
based mechanism circumvents the extensibility problems
caused by DTDs at the cost of adding a new
metalanguage and associated tools. While XML tools can
check the syntax of an ADML document, a separate set of
tools must be used to check names, types, and values of
the properties. Because of this, users extending ADML
lose the use of existing tools that work with XML’s
powerful meta-language elements.

We considered converting either the ADML or
xADL 1.1 DTD into an XML schema and using that as a
core. But, in doing so, we would have removed non-
essential elements. In the case of ADML, we would have
removed the property-based extension mechanism in
favor of an XML-based one. Either option would have
rendered the resulting core incompatible with xADL 1.1
or ADML, sacrificing any existing tool support in the
process.

3.3. Why we chose (to develop) xArch
Instead of modifying one of the existing XML-based

ADLs beyond recognition, we decided to build xADL 2.0
as an xArch application. In fact, our participation in the
development of xArch (alongside Carnegie Mellon
University) was largely driven by our desire to use it as a
basis for xADL 2.0.

Rather than defining its own meta-language for
extension, which would lead to the problems outlined
above, xArch leverages the tools and techniques
developed for XML schemas. This allows us to extend the
xArch core directly, adding our own first-class elements
and types. For example, using XML extensions, we were
able to add type systems, architectural configuration
management, mappings to component/connector
implementations, and more, drawing from and expanding
on the research results and capabilities of previous ADLs.
Furthermore, we were able to use existing XML tools to
rapidly develop our extensions, giving us more time to
concentrate on building xADL 2.0 tools that focused
specifically on xADL 2.0 semantics.

4. APPROACH

4.1. Organization of the xADL 2.0 Schemas
A xADL 2.0 document is an XML document that

conforms to the syntax of the xArch core and xADL 2.0
extensions to that core. It is useful to understand how the
various XML schemas that comprise xADL 2.0 are
organized in terms of their dependencies. One of the
limitations of using XML schemas as a meta-language is
that, at this time, they only support a single-inheritance
model of subtyping. Thus, it is not possible for two
independent extensions of the same XML tag to coexist in
an XML document. To avoid this problem, we have
introduced some artificial dependencies among the
xADL 2.0 schemas (see Fig. 1a). The XML community
expects to support multiple inheritance subtyping in a
future version of XML schemas. When this change
occurs, we will rework the xADL 2.0 schemas to remove
these artificial dependencies, keeping only the necessary
conceptual dependencies (see Fig. 1b).

Perhaps a more useful organization of the xADL 2.0
schemas breaks them into three groups according to their
purposes. One set of schemas establishes the architecture
description, or run-time model, and architecture
prescription, or design-time model. A second set of
schemas provides mappings from components and
connectors to their implementations. A third set of
schemas provides support for architectural configuration
management. The features provided by each schema are
shown in Table 1.

4.1.1. Architecture Description and Prescription

The xADL 2.0 architecture model is defined in the
xArch instances schema and the xADL 2.0 structure &
types schema. xADL 2.0 maintains a separation between
the run-time and design-time models of an architecture. In
most cases, design-time information about an architecture
(architectural prescription) differs greatly from run-time
information (architectural description). For instance, a
design-time model could indicate that a group of
components are optional, whereas a run-time model
would indicate whether those components were actually
instantiated or not.

xADL 2.0 also maintains programming language-
style type information about components, connectors, and
interfaces. A type system is valuable because it allows

tools and users to make inferences about entities of the
same type. Depending on the semantics associated with
types, one may infer, for example, that two components
exhibit similar behavior, or share an implementation.

4.1.2. Implementation Mappings

Some of our previous work with software architecture
models showed that, if elements in the architectural
model are associated with implementations of those
elements, tools can instantiate and manipulate a running
system directly from the model [15]. xADL 2.0 has a
schema, the abstract implementation schema, that can be
extended in a straightforward manner to describe
component, connector, or interface implementations in
different languages.

xA rch In stan ces

S tru ctu re an d Types

O ption s Varian ts

Version s

A bstract Im plem en tation

Java Im plem entation

Structure and Types

O ptio n s Variants A bstract Im plem entation

Java Im plem entation

Versions

Fig. 1. Actual and conceptual dependencies of the xADL 2.0 XML schemas. Child nodes are dependent on
their parent node.

(b)
xA rch In stan ces

(a)

Purpose Schema Features Provided

Architecture
Modeling -

Description and
Prescription

xArch Instance

Component, connector,
interface, and link instances;
arbitrary groups; hierarchical

construction.

Structure &
Types

Design-time architectural
prescription; architectural

structure (components,
connectors, interfaces, and

links), programming-language
style types-and-instances

model; hierarchical
construction via types.

Instantiatable
Architectures

Implementation

Abstract placeholder for
implementation information

for components and
connectors.

Java
Implementation

Java-specific implementation
information for components

and connectors.

Architecture
Configuration
Management /

Product Family
Architectures

Options Optional components,
connectors, and links.

Variants Variant component and
connector types.

Versions
Version graphs for

components, connectors, and
interfaces.

Table 1. xADL 2.0 schemas and features provided.

4.1.3. Architecture Configuration Management

One issue in building adaptable and flexible
architectures is the ability to manage an evolving software
architecture. To compound the problem, individual
elements in the architecture may evolve independently.
Architecture-based configuration management is one way
we are attempting to address these issues [10].
Architecture-based configuration management applies
traditional configuration management techniques such as
versions, options, and variants to architectural elements
and architectures as a whole.

As an additional benefit, the combination of versions,
variants and options allows architects to define a product
family architecture [12,18]. Product family architectures
are similar architectures that vary depending on their
intended purpose. The use of options and variants gives
an architect the freedom to specify an entire product
family in a single design-time xADL 2.0 document, and
then instantiate any one of the members of the product
family. Versioned types allow various members of the
family, or the family as a whole, to evolve over time.

Three xADL 2.0 schemas, the versions, options, and
variants schemas, provide the modeling constructs to
represent these CM concepts.

4.2. Tools
One of the cornerstones of our approach is the

intimate tie between xADL 2.0 and xADL 2.0-aware
tools. Specifically, we do not anticipate that any user will
write a xADL 2.0 document directly. As noted in the
introduction, the only users who should be aware of
xADL 2.0’s internal representation are those who are
writing extension schemas. Other users are shielded from
the peculiarities of XML and the xADL 2.0 structure by
tools that provide users with structured APIs to a xADL
2.0 document. These tools are described, in detail, in
Section 8.

5. ARCHITECTURE MODELING SCHEMAS

5.1. Instances Schema
xArch does not make a distinction between the run-

time and design-time views of the system, as described by
the instances schema. xADL 2.0, however, explicitly
separates design-time elements from run-time elements.
xADL 2.0 uses the instances schema exclusively to
represent run-time instances. Design-time elements are
represented in the structure & types schema, described in
detail in Section 5.2. The run-time instances are the
architecture description, described in Section 4.1.1 above.
Elements from the instance schema represent actual,
running counterparts in an executing software system.

In xADL 2.0’s use of the xArch instances schema,
component, connector, interface, and link instances are
semantically neutral; that is, their behaviors are not
formally specified. This is in keeping with xArch’s
semantically neutral nature. As such, the instance schema
is basically structural, describing the topological
organization of component and connector instances. In
this topology, conventions from typical ADLs are
employed: component and connector instances may have
zero or more interface instances connected by link
instances, and component and connector instances can be

hierarchically constructed out of smaller-grain instances.
This set of architectural elements is similar to that found
in the Acme core [7]. A survey of other ADLs [16]
reveals that most ADLs contain similar notions of
components, connectors, interfaces and links.

xADL 2.0 leverages the general-purpose grouping
mechanism provided by xArch. This provides the ability
to define identifiable groups of elements that may be used
by specific tools built with xADL 2.0. A group may, for
example, represent elements that exist on the same
machine (in a distributed system) or elements that were
created by the same author. Groups in the instance
schema are semantically neutral, but semantics can be
added through an extension to the group structure.

5.2. Structure & Types Schema
xADL 2.0 uses the structure & types schema to model

design-time elements. This is the architecture
prescription, described in Section 4.1.1 above. We view
the prescription of an architecture as a template - a recipe
that can be used to instantiate a running system. Along
with structural prescription, this schema provides a type
system that allows architects to reason about design-time
elements that share a common type.

The structure and types schema builds on the instance
schema and adds several modeling constructs:
• Structural prescription: the design-time template for

components, connectors, interfaces, and links that can
be instantiated into a running architecture;

• A type system that captures type information about
these structural elements;

• A type-based hierarchical construction method;
• Groups; and
• Links between component, connector, and interface

run-time instances and their design-time counterparts.
Each of these is described in detail below.

5.2.1. Structural Prescription

Whereas elements in the instance schema represent
real, running instances, the components, connectors,
interfaces, and links in the structure & types extension
represent their design-time counterparts. These
components, connectors, interfaces, and links are also
semantically neutral; we assume behavior will be
specified in future xADL 2.0 extensions.

Typical uses of the architectural prescription are to
capture design rationale about the system and to serve as
a template for automatic instantiation of the system.

5.2.2. Type System

The structure & types extension defines a
programming-language style type system for xADL 2.0
elements. Architects can define a set of component,
connector, and interface types. Each component and
connector type contains a set of signatures, each of which
references an interface type. These types, again, are all
semantically neutral, and can be extended to provide
semantic information. This allows the creation of
different ADLs with differing type semantics. One such
extension, which maps types to implementations, is
described later. Each structural component, connector,
and interface contains a reference to its type. With this
type system, it is possible to make certain inferences

about an architecture. For instance, two connectors of
type “BusConnector” might have similar behavior or
share an implementation. As another example, two
components whose types expose the same set of
interfaces may be substitutable for one another. Despite a
lack of semantic information, these kinds of inferences
already provide an important base level of functionality
upon which to create useful abstractions and tools.

5.2.3. Hierarchical Construction via Types

The structure & types schema allows two different
kinds of types: basic types and compound types. Basic
types are user-defined, opaque, and have no substructure.
Compound types, on the other hand, have their own
structural prescription and set of types.

Recall that in the instance schema, hierarchical
construction of a component or connector was
represented directly in the component or connector
description. This requires the entire system specification
to be contained in a single document. In the design-time
model, hierarchical construction is done through types.
The internal structure of a compound type can be defined
in a file other than the file containing the type definition.
This allows architects to design complex components as
separate architectures in separate xADL 2.0 documents,
and link them into a larger application in a higher-level
design document.

Fig. 2 shows a simplified diagram of an example
integrated development environment. The three high-level
components (editor, compiler, and debugger) are
themselves be entirely separate applications capable of
running independently. However, in this example, they are
connected together in the IDE. Thus, each of them is
specified in its own xADL 2.0 file, as shown in the left-
hand side of the figure. This side shows the design-time
documents for the compiler, debugger, editor, and IDE. In

these design-time documents, the elements are from the
structure & types schema. The right-hand side of the
figure shows an instance document that depicts a running
IDE system instantiated from the IDE’s prescription,
specified in the document shown on the left.

5.2.4. Design-Time Groups

The grouping system described earlier for the
instance schema is mirrored in the structure & types
extension, allowing groups of structural elements and
types for any purpose.

5.2.5. Instance-to-Structure Links

The structure & types schema augments the
connector, component, and interface instances from the
instance schema. It adds a pointer from the instances to
their structural (design-time) counterparts. This firmly
establishes the connection between instances and the
design-time elements that represent them.

6. ARCHITECTURE INSTANTIATION SCHEMAS

6.1. Abstract Implementation Schema
One of the strengths of xADL 1.1 [11] was its

mapping of component and connector types to
implementations of those types (in the form of Java class
files, for instance). If each type used in the system were
mapped onto an implementation, the architecture could be
instantiated and executed solely from the xADL 1.1
specification. We retained this feature in xADL 2.0, again
mapping basic types to implementations. However,
compound and variant types are not mapped to
implementations, since the smaller-grained types that
make up these composite types are mapped instead.

Compiler

Editor

Debugger

ide-instance.xml

compiler.xml editor.xml debugger.xml

ide.xml
instantiation

Design-Time - Structure & Types Namespace Run-Time - Instances Namespace

Fig. 2. Relationship between structure, types, and instances in xADL 2.0. Note that this diagram is
somewhat simplified for understandability, with some elements and links not depicted.

L eg en d : X L in k X M L file C o m po nent TypeL in k

Depending on the language and tools being used,
implementations of an architectural element can take
many forms (Java class files, Windows .DLL’s, etc.)
Obviously, we cannot predict all these possible
implementation methods in advance. So, we chose to
develop a small abstract implementation schema that
adds to xADL 2.0 an implementation placeholder on each
component, connector, and interface type. This is
analogous to a “virtual” or “abstract” class in an object-
oriented programming language. Architecture documents
replace this placeholder with concrete implementation
details.

6.2. Java Implementation Schema
As an example of how the abstract implementation

schema can be extended to provide support for a
particular language, we have created the Java
implementation schema. This schema adds to xADL 2.0
the ability to specify the location of the Java-language
implementation of a component, connector, or interface
type.

Specifically, each type is extended with a modeling
construct that contains a set of pointers to class files. One
class file is designated as the “main” class; this is the one
that is actually instantiated. The other class files in the set
are auxiliary class files, and their locations are specified
to give Java class loaders the location of each class file
required for a certain component, connector, or interface.

7. CONFIGURATION MANAGEMENT SCHEMAS

As an example of how xADL 2.0 can incorporate
information that is not traditionally associated with the
field of software architecture, it includes support for
architecture-based configuration management.
Specifically, we included support for modeling the
optionality of architectural elements (options),
alternatives among architectural elements (variants), and
the evolution of architectural elements (versions). Each
one of these is specified in a separate extension, discussed
below.

7.1. Options Schema
The options schema provides the ability to specify

that certain components, connectors and links are optional
when instantiating the architecture. To do this, the options
schema extends the structural components, connectors,
and links from the structure & types schema. Each
optional element is annotated with a guard condition. The
guard condition is programmatically evaluated when the
architecture is instantiated. If the guard condition is
satisfied, then the optional element will be instantiated
and included in the running architecture. Otherwise, the
element will not be instantiated.

7.2. Variants Schema
The variants extension provides the ability to specify

that the type of certain components and connectors can
vary when instantiating the architecture [10].

Recall that the structure & types extension allows two
kinds of types: basic types (having no substructure) and
compound types (having substructure). The variants
extension adds a third kind of type: union types, here
called variant types. Recall that in a programming

language, a variable declared with a union type becomes
one of many actual types when it is instantiated. Variant
types in xADL 2.0 are similar. The variants extension
extends the structure & types extension and allows
architects to specify a variant type for components and
connectors. A variant type is composed of several
alternatives, one of which will be selected at instantiation
time. A guard accompanies each alternative. If the guard
for a particular alternative is satisfied, then that alternative
is selected. Guards for a particular set of alternatives must
be mutually exclusive.

7.3. Versions Schema
As a software architecture evolves and is deployed,

new versions of components, connectors, and interfaces
will naturally develop. Furthermore, multiple versions of
a single component, connector, or interface may exist
simultaneously in a single software system. Over time,
older elements may be replaced with new versions of
themselves, possibly at runtime. Newer elements may
also be replaced with older elements, which can occur
when an intolerable bug is found in a newer version of a
component. Version information is also important for
already-deployed systems, so deployment managers can
evaluate and upgrade those systems.

The versions schema provides the ability to store
version information about elements in an architecture.
Specifically, it adds the following two abilities to xADL
2.0: the ability to capture version graphs for component,
connector, and interface types, and the ability to relate
each type to its respective version.

7.3.1. Version Graphs

The versions schema allows component, connector,
and interface types to have associated version graphs. We
chose to version types rather than structural elements for
several reasons. First, xADL 2.0 associates basic types
with implementations. Different versions of a component,
connector, or interface type probably have different
implementations. Second, versioning types rather than
structural elements allows xADL types with
subarchitectures to be versioned. This allows designers to
version an entire architecture—structure included. Since
each version of a compound type is allowed to have its
own structure, the structure of an application (or part
thereof) may be evolved by versioning the compound type
that wraps it. Similarly, to version a variant type is to
version its set of possible alternatives and guards.

The version graph specifies the relationship between
versions of element types, capturing the flow of its
evolution. The version graph for an element type is a
directed acyclic graph. Unlike RCS-style version trees,
xADL 2.0 version graphs allow each node (version) to
have multiple parent and child versions. A version with
multiple parents indicates that it was created via a merge
of its parents. xADL 2.0 also permits a parent-child
relationship across version graph boundaries. This is
meant for cases where renaming occurs; that is, when a
new version of an element is split off to create an entirely
new entity with its own version tree. Examples of
renaming can occur when a new version of a component
type has changed so significantly that it becomes a new
component type, or when an existing component type is

split into two or more parts, and each part evolves
separately from that point on.

7.3.2. Links from Types to Their Versions

The versions schema extends component, connector,
and interface types from the structure & types schema to
add links to a node in the version graph. This allows the
use of versioning knowledge when manipulating the types
and structure of an architecture. For example, it allows
such operations as “replace component A with its latest
version.” Of note is that each type can be of exactly one
version and that multiple versions of a single element can
be included in the same architecture.

8. TOOL SUPPORT

In developing xADL 2.0, we leveraged several off-
the-shelf tools and have so far built two custom tools to
support xADL 2.0-based development.

8.1. Off-the-Shelf Tools
A growing number of XML schema-aware tools are

becoming available to assist schema authors. Two such
tools that were invaluable to us were XSV [22] and XML
Spy [2]. XSV is the XML Schema Validator, built by
Henry Thompson and Richard Tobin at the University of
Edinburgh in Scotland. XSV was one of the first tools to
support the latest W3C drafts of the XML schema
specification. We used XSV to validate the syntactic
correctness of our schemas. XSV also has the ability to
validate an XML document against a schema (or set of
schemas). We used this to validate the first xADL 2.0
example documents when the schemas were finished.

XML Spy, a commercial product from Altova GmbH,
is a more graphical tool that can be used to create, edit,
and visualize XML schemas and instance documents.
While the version of XML Spy supporting XML schemas
was not released in time for our initial development, we
did use it for post-release analysis of our schemas. One of
XML Spy’s most useful features is the ability to generate
a graphical representation (in the form of an annotated
tree) of the types and elements defined in an XML
schema. We found that this representation is far more
useful for humans attempting to understand the schemas
than the schemas themselves.

8.2. In-House Tools
DOM (the Document Object Model) provides an

object-oriented interface to an XML document. It
represents each element, attribute, and text segment in the
document as an object that can be manipulated through
the object’s interface. DOM has been implemented in
many languages on many platforms. Various DOM
serializers exist that, given the DOM model, can output
the corresponding XML document.

Because of DOM’s relative ubiquity and future
porting possibilities, we built a set of DOM-based
libraries in Java that form a programmatic interface to
xADL 2.0 documents. We built these libraries on top of
an off-the-shelf XML parser and DOM implementation,
Apache Xerces [3]. Unlike DOM, which has objects and
interfaces that are necessarily generic (elements and
attributes, for instance), our Java libraries provide
interfaces and objects corresponding to the elements

defined in the xADL 2.0 schemas themselves. Rather than
simple, general functions like getElement(...) and
addChild(...), our Java libraries expose xADL 2.0-
specific functions like addComponent(...) and
addVersion(...). Each XML type defined in the
xADL 2.0 schemas has a corresponding class and
interface in our Java libraries. This insulates xADL 2.0
developers from the peculiarities of XML, such as the
proper sequencing of child elements and the mapping of
XML namespace prefixes to URIs. Admittedly, these
APIs do require knowledge of the structure of a xADL 2.0
document. However, we are currently adding another
layer of abstraction that we call the “convenience API”
that will shield xADL 2.0 users from this.

A final key feature of the Java xADL 2.0 libraries is
that they ignore unknown extensions found in xADL 2.0
documents, but leave the data from these extensions intact
when changes are made to the document. This is
extremely important since we expect xADL 2.0 to be the
basis for many independently developed extensions.
xADL 2.0 tools need to be able to handle specifications
that contain extra information from these extensions,
without losing or corrupting this information.

The Java code for these xADL 2.0 libraries can be
generated programmatically, given the XML schemas. To
do this, we built a tool called ‘apigen.’ Given a set of
XML schemas, apigen generates DOM-based Java
libraries for those schemas. Apigen is not xADL 2.0—
specific; rather, it can generate libraries for any xADL 2.0
schema, including the xArch instances schema.
Unfortunately, because of the complexity of the XML
schema language, apigen only supports a subset of this
language. However, the subset supported by apigen is
sufficient for the xArch core and all xADL 2.0 extensions
to date. Support for additional XML schema constructs
can be built into apigen with incremental effort.

9. DISCUSSION

Our development of xADL 2.0 and our participation
in the development of xArch was originally driven by a
desire to build software architecture-based tools and
development environments. Time and again, we found
that software architecture researchers, including
ourselves, had built their own internal representations of a
software architecture for use in tools because extending
an existing ADL was either too cumbersome or too time-
consuming. Our previous work building the ArchStudio
2.0 [15] architecture-based development environment
showed that providing a common repository (that we
called ArchADT) for tools to store their architecture data
reduced tool development time and increased
interoperability greatly. However, many ArchStudio tool
developers continued to create their own files and file
formats for some data because ArchADT did not have an
elegant extension mechanism.

xADL 2.0 solves this problem by making the
architecture representation extensible. We anticipate that
architecture tools will be built and modified to add their
own information to xADL 2.0 representations, using
automated tools like apigen to rapidly extend xADL 2.0
to store the additional information.

xADL 2.0’s extensibility will allow us to quickly
prototype and model new architectural constructs as our
research interests evolve and expand. Currently, our focus

is shifting to modeling dynamic, distributed software
architectures that can be changed (and change
themselves) at run-time. To support this, we will need an
ADL that can store the state of components and
connectors, events that are traversing the architecture, and
a method to represent an architecture that is distributed
across many machines. Since we do not yet know the
exact set of modeling facilities we will use, we will need
to experiment with and prototype new modeling
constructs. xADL 2.0 provides us the basis with which to
do this.

We realize that, compared to other, existing ADLs,
the current set of features in xADL 2.0 does not
incorporate features from previous ADLs such as
behaviors, constraints, and formally-specified protocols.
This is partially due to the fact that we are exploring new
constructs. Our success in developing xADL 2.0
extensions for these novel features indicates, to us, that
incorporating more common features will be equally
possible.

10. CONCLUSIONS AND FUTURE WORK

xADL 2.0 is an extensible ADL built so architecture
researchers can quickly experiment with new modeling
constructs and features in architecture description
languages. To date, it includes several key features
(separation between design- and run-time,
implementation mappings, and configuration
management) that we feel are inadequately represented in
comparable ADLs. We will further extend xADL 2.0 in
the near future with constructs corresponding to our
research in architectural distribution and dynamism.

We realize that the extensibility provided by XML
schemas as used by xADL 2.0 is closely related to the
mechanisms used in extensible programming languages.
Other relevant paradigms include intensional
programming, aspect-oriented programming, and even
configuration management concepts such as change sets.
As part of our future evaluations, we intend to make a
detailed comparison to those paradigms and adopt their
unique features as may be necessary to further strengthen
the extensibility of xADL 2.0.

It is our ultimate desire to refactor the ArchStudio
environment [11] and tools to use an extensible xADL
2.0-based version of ArchADT for storing and
manipulating architecture data. We are currently working
on a set of “convenience APIs” that will be able to
directly provide information about the architecture that is
only indirectly provided in the xADL structure. For
instance, each component instance has a reference to its
type, but component types currently do not have
references to their instances. Rather than also modeling
these kinds of references in the xADL 2.0 extensions and
relying on a user to maintain the links, the convenience
APIs will provide automated functionality to discover, for
example, the set of instances of a given type. The
convenience APIs will also allow transparent traversal of
references across files, providing the user with the
illusion of a single, coherent architectural model—even if
the model itself is distributed across many files. The goal
of these convenience functions is to insulate users
completely from the peculiarities of the xADL 2.0
document structure. Eventually, we intend to wrap the
xADL 2.0 Java libraries and these convenience APIs in an

event-based component that can update ArchADT in the
next release of our ArchStudio environment.

Additionally, xADL 2.0’s support for configuration
management ties in with our research on CM-based
architecture evolution. We plan to use xADL 2.0 as an
architecture representation in future versions of Ménage
[10]. The goal of the Ménage project is twofold: a) to
precisely capture a product family architecture by jointly
utilizing techniques from configuration management and
software architecture and b) to use the resulting definition
to create novel, component-based software development
tools.

The xADL 2.0 specifications and tools are intended
for software architecture researchers that want to
experiment with new modeling constructs and manipulate
them without rebuilding an entire modeling language
from scratch, as has been done so many times before.
XML provides the extensibility mechanism, and
xADL 2.0 provides an expanded set of useful constructs
that can serve as the basis (through additional extension)
for more expressive ADLs. While we have not yet
reached a stage in our development where we can
comment on xADL 2.0-based tool interoperability, we
anticipate that integrating xADL 2.0-based tools will be
much easier than integrating tools that use their own
proprietary representation for architectures.

11. URL

xADL 2.0, xArch, and their associated tools are
available at:

http://www.isr.uci.edu/projects/xarchuci/

12. ACKNOWLEDGEMENTS

The authors would like to thank David Garlan and
Bradley Schmerl at Carnegie Mellon University for their
cooperation on the creation of the xArch instance schema.
The authors would also like to acknowledge the
invaluable feedback and contributions of Yuzo Kanomata
and Craig Snider at UCI, Nenad Medvidovic and his
students at USC, Nicolas Rouquette and his team at JPL,
and Alex Wolf, Dennis Heimbigner, and Nathan Ryan at
CU Boulder.

13. REFERENCES

[1] R. Allen and D. Garlan. A Formal Basis for Archi-
tectural Connection. ACM Transactions on Software
Engineering and Methodology, July 1997.

[2] Altova GmbH. XML Spy Software. http://www.xml-
spy.com/. January, 2001.

[3] The Apache Group. Xerces Java Parser. http://
xml.apache.org/. January, 2001.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E.
Maler, eds. Extensible Markup Language (XML)
1.0 (Second Edition). http://www.w3.org/TR/2000/
REC-xml-20001006. October 6, 2000.

[5] T. Bray, D. Hollander and A. Layman, eds.
Namespaces in XML. http://www.w3.org/TR/1999/
REC-xml-names-19990114/. January 14, 1999.

[6] D. C. Fallside. XML Schema Part 0: Primer. http://
www.w3.org/TR/xmlschema-0/. October 24, 2000.

[7] D. Garlan, R. Monroe, and D. Wile. ACME: An

Architecture Description Interchange Language. In
Proceedings of CASCON’97, November 1997.

[8] D. Garlan and M. Shaw. An Introduction to Software
Architecture: Advances in Software Engineering
and Knowledge Engineering, volume I. World Sci-
entific Publishing, 1993.

[9] C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice Hall, 1985.

[10] A. van der Hoek. Configurable Software Architec-
ture in Support of Configuration Management and
Software Deployment. In Proceedings of the
ICSE99 Doctoral Workshop, Los Angeles, Califor-
nia, May 1999.

[11] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvi-
dovic, and R. N. Taylor. xADL: Enabling Architec-
ture-Centric Tool Integration With XML. In
Proceedings of the 34th Hawaii International Con-
ference on System Sciences (HICSS-34), Maui,
Hawaii, January 3-6, 2001.

[12] J. Kuusela. Architectural evolution. In Proceedings
of the First Working IFIP Conference on Software
Architecture, pages 471—478, Boston, Massachu-
setts, February 1999. Kluwer Academic.

[13] D. C. Luckham and J. Vera. An Event-Based Archi-
tecture Definition Language. IEEE Transactions on
Software Engineering, September 1995.

[14] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures.
Proc. of 5th European Software Engineering Con-
ference (ESEC '95), Sitges, September 1995.

[15] N. Medvidovic, P. Oreizy, R. N. Taylor, R. Khare,
and M. Guntersdorfer. An Architecture-Centered

Approach to Software Environment Integration.
Technical Report UCI-ICS-00-11, Department of
Information and Computer Science, University of
California, Irvine. March, 2000.

[16] N. Medidovic, R. N. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on Soft-
ware Engineering. 26(1):70-93. January, 2000.

[17] The Open Group. ADML Document Type Defini-
tion. http://www.opengroup.org/public/arch/p4/
adml/adml.dtd.

[18] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala component model for product
families in consumer electronics software. Com-
puter, 33(2):78—85, March 2000.

[19] D. E. Perry and A. L. Wolf. Foundations for the
Study of Software Architectures. ACM SIGSOFT
Software Engineering Notes, October 1992.

[20] S. Pruitt, D. Stuart, W. Sull, and T.W. Cook. The
Merit of XML as an Architecture Description Lan-
guage Meta-Language. Microelectronics and Com-
puter Technology Corporation White Paper. January
28, 2000.

[21] J. Spencer, ed. Architecture Description Markup
Language (ADML): Creating an Open Market for
IT Architecture Tools. Open Group White Paper.
September 26, 2000.

[22] World Wide Web Consortium. Validator for XML
Schema. http://www.w3.org/2000/09/webdata/xsv.
September, 2000.

