
ABSTRACT

Our approach to creating self-healing systems is based on
software architecture, where repairs are done at the level of a
software system’s components and connectors. In our
approach, event-based software architectures are targeted
because they offer significant benefits for run-time
adaptation. Before an automated planning agent can decide
how to repair a self-healing system, a significant
infrastructure must be in place to support making the planned
repair. Specifically, the self-healing system must be built using
a framework that allows for run-time adaptation, there must
be a language in which to express the repair plan, and there
must be a reconfiguration agent that can execute the repair
plan once it is created. In this paper, we present tools and
methods that implement these infrastructure elements in the
context of an overall architecture-based vision for building
self-healing systems. The paper concludes with a gap analysis
of our current infrastructure vs. the overall vision, and our
plans for fulfilling that vision.

1. INTRODUCTION

Two distinct elements are required for the development of
self-healing systems. First, an automated or semi-automated
agent must be present to make the decision of when and how
to effect a repair on a system. Second, an infrastructure for
actually executing the repair strategy must be available to that
agent. In this paper, we present a long-term vision and
approach for developing self-healing systems, but we focus
primarily on an infrastructure we have developed to support
the creation and execution of repair strategies on software sys-
tems.

Our primary strategy for effecting repairs in running soft-
ware systems is architecture-based evolution. We believe that
software change at the level of its architecture—that is, in
terms of its components and connectors, is the approach that
offers the most flexibility in the types of repairs that can be
performed in a system. Component boundaries are, ideally,
the most loosely coupled connection points in a software sys-
tem, making them the most flexible points of reconfiguration.

Our strategy is applied to event-based architectures. In
such architectures, all communication across component
boundaries is via independent messages, or events, and there
is no assumption of shared memory between components.
Additionally, all events go through first-class connectors,

which allow for further flexibility by reducing direct inter-
component dependencies. Because components are not
allowed to directly point to one another, they are essentially
ignorant of their location in the architectural topology. This
allows components to be inserted, removed, and replaced
without explicit changes to component code. For these rea-
sons, event-based architectures offer a significant degree of
loose coupling and autonomy of components that we feel is
necessary for software repair “without foresight”—that is,
without the types of repairs that can be performed being
explicitly coded into the individual components. Past research
has revealed that event-based wrappers can be developed for a
large variety of off-the-shelf components [7], even if they
were not originally developed to use event-based communica-
tion.
The ability to dynamically repair a system at runtime based
on its architecture requires several capabilities:

1. The ability to describe the current architecture of the system;
2. The ability to express an arbitrary change to that architecture

that will serve as a repair plan;
3. The ability to analyze the result of the repair to gain confi-

dence that the change is valid; and
4. The ability to execute the repair plan on a running system

without restarting the system.

To date, we have developed technologies and methods
that address each of these areas. In our approach, architectures
are represented in xADL 2.0 [3,15], an extensible, XML-
based architecture description language that provides facilities
for mapping architecture descriptions to running systems.
Changes to software architectures are represented as architec-
tural differences, also expressed in a subset of the xADL 2.0
language. These differences can describe arbitrary changes to
a software architecture in xADL 2.0, and are automatically
generated by an architectural differencing engine. These dif-
ferences serve as architectural patches in our approach. The
results of applying such a patch can be analyzed before apply-
ing them to a running system using design critics. We have
already developed a set of critics for analyzing basic architec-
tural properties, but we also provide a framework in which
new critics for specific domains or concerns can be devel-
oped. Finally, we have developed a significant infrastructure
for building and evolving event-based software architectures
that supports architectural reconfiguration, and a software
component called an architecture evolution manager that can
instantiate and update a running system whenever its architec-
ture description changes.

Tool integration is especially important in the context of
self-healing systems since no human can be involved in man-
ually transforming tool outputs or invoking tools. Recogniz-
ing this, all our tools for managing architectural repairs and
changes are integrated in an architecture-based software

Towards Architecture-based Self-Healing Systems

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425, U.S.A.

+1 949 824 4101

Eric M. Dashofy
edashofy@ics.uci.edu

André van der Hoek
andre@ics.uci.edu

Richard N. Taylor
taylor@ics.uci.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WOSS '02, Nov 18-19, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-609-9/02/0011 ...$5.00



Fig. 1. Tools and documents found in our approach to self-healing systems and their relationships to each other.

development and evolution environment called ArchStudio 3
[1]. This integration allows our tools to interoperate with each
other and use each others’ outputs to analyze or evolve the
system, which is necessary for complete automation of the
repair process. For instance, the output of an analysis tool can
be used to verify whether an architecture after repair is valid
before the architecture evolution manager performs the
changes to the running system. 

2. BACKGROUND

The vision for the approach we advocate for self-healing
systems is detailed in Oreizy et. al., [8]. This vision can be
summarized as self-adaptation based on event-based software
architectures, using a deployed architecture description as the
basis for reflection. While the overall approach is maintained,
we have more deeply explored many aspects of it. For
instance, we have defined a format for expressing architec-
ture-based change and tools to evolve architectures based on
that format, we have integrated analysis tools into the
approach, and we have refined the process of evolving a sys-
tem. In doing so, we have brought new technologies and
methods to aspects of the approach that will allow us, in the
near future, to more accurately fulfill this vision.

Due to space constraints and scope, it is impossible to
detail all these technologies fully in this paper; however, this
section highlights the technologies that we and others have
developed that contribute to our overall approach.

xADL 2.0 [3,15] is an extensible, XML-based architec-
ture description language that is used in our approach to
model software architectures and architectural changes. Previ-
ous efforts have used static description languages to describe
systems; any additions or changes to the notation required
costly tool rewrites. xADL 2.0, along with its tool-set that
supports its extensibility, allows us to experiment with new

constructs more easily, to better support different domains and
types of self-healing systems.

ArchStudio 3 [1] is an architecture-centric development
and evolution environment that is an outgrowth of the Arch-
Studio 2.0 project [5]. It incorporates xADL 2.0 as its internal
representation for architectures under development, and the
xADL 2.0 tools are components in the environment. ArchStu-
dio 3 is built with and can be evolved using the same tech-
niques described in the Approach section.

Our approach to expressing and performing architectural
changes, architectural “differencing and merging,” is
described in detail in [13]. Our approach to performing archi-
tecture-based analysis is based on design critics, which are
described in [9].

3. APPROACH

Our work to date on the creation of architecture-based
self-healing systems has focused on describing and executing
planned repairs. Fig. 1 shows the relationships between the
various tools and documents in our approach; these are dis-
cussed in detail throughout this section.

3.1. Describing System Architectures
In our approach, the architectures of the software systems

under consideration are described in xADL 2.0, an extensible,
XML-based architecture description language. A unique
aspect of our approach is that software architecture descrip-
tions are an integral part of the deployed software system they
describe. The system is instantiated from the software archi-
tecture description meaning that components are located and
loaded based on implementation information contained in the
architecture description. Links among components and con-
nectors are created based on the architecture description,

ArchStudio 3 - Architecture-based Development Environment

xADL 2.0
Architecture 
Descriptions

xADL 2.0
Architecture 
Differences

xADL Repository
Stores xADL 2.0 
documents, emits 

change events.

Design Critics
Analyze architec-
tures and report 

problems.

ArchDiff
Analyzes differ-
ences between 
architectures.

ArchMerge
Merges diffs into 
architectures to 

evolve them.

AEM
Maintains descrip-

tion-to-run-time 
mapping.

stored-in

stored-in

uses uses

usesuses

creates

are-input-for

analyze

c2.fw - Event-based Architecture Development Framework

c2.fw

Running
System

Self-healing 
system

 managed by 
AEM.

instantiates &
      manages

notifies of
changes

Legend:

Document

Software
Tool

Architecture
Framework

creates-as-result-of-merge



rather than by individual components or a hard-coded boot-
strap loader.

Using an extensible architecture description language is
important for our approach to have wide applicability. Our use
of an extensible ADL allows us to tailor the language to sup-
port specific types of repairs, domains, or implementation
platforms, middleware, and languages. In contrast to much
previous research done in the architecture community, which
focused on detailed formal specification of architecture
behaviors, we have found that basic architectural repair can be
done with only a modicum of information about the location
and format of component and connector implementations. For
instance, xADL 2.0 includes a Java implementation mapping
that specifies only the location and name of the main and aux-
iliary Java class files for a component. The mapping also
includes support for component initialization parameters,
allowing slightly different behaviors for components without
having to maintain parallel versions. We have found that this
level of specification is sufficient for many types of software
repairs. Retaining small implementation mappings eases the
job of the architecture specifier and makes the approach more
practical. For domains that require more information about a
system’s behavior or run-time state to perform a repair, appro-
priate specifications can be added to the ADL in whatever for-
malism is natural for the domain.

3.2. Describing Changes to an Architecture
To effect a repair on a running software system, the

changes to the system that will occur because of the repair
must be specified and machine-readable. An architectural
repair can be expressed in terms of an architectural difference.
An architectural difference, or ‘diff,’ is a document that
describes the difference between two software architectures
specified in an ADL (in our case, xADL 2.0). Architectural
diffs are similar to textual diffs (as would be generated by the
‘diff’ program on UNIX). In the context of self-healing sys-
tems, architectural diffs describe the difference between the
software system’s architecture before a repair and the archi-
tecture after the repair.

Using the xADL 2.0 extensibility mechanism and tools,
we defined a new schema for describing architectural diffs.
The schema itself is fairly simple,  consisting of two
sequences: one of additions and one of removals. Elements in
the diff include components, connectors, links, component
types, connector types, and interface types. To complement
this schema, we built an architectural differencing engine
called ArchDiff. ArchDiff takes, as input, two xADL 2.0
architecture descriptions. In this context, the first describes
the current architecture, and the second describes the architec-
ture after a proposed repair. The “after” description can be
generated by a tool or by hand. ArchDiff outputs an architec-
tural diff conformant to the xADL 2.0 diff schema. Differ-
ences are primarily determined by the presence of new
elements or the absence of old elements in the “after” descrip-
tion, but changes to existing elements are also detected by
comparing the contents of element descriptions. A change to
an element is treated as a replacement, and results in the diff
containing both a “remove” for the old version of the element
and an “add” for the new version.

ArchDiff and the diff schema take advantage of xADL
2.0’s extensibility mechanism. If the definition of one of the
existing elements in the diff (component, connector, etc.)
changes or is extended, neither the ArchDiff tool nor the diff
schema need to be changed. Changes to the tools and the
schema are only necessary if new first-class constructs are
added to the architecture description language.

In complement to the ArchDiff differencing engine, we
have built an architecture merging engine called ArchMerge.
ArchMerge can “apply” a diff to a base architecture, trans-
forming it into a target architecture. If the base architecture is
the same as the “before” architecture used to create the diff,
then the output will be the “after” architecture used as the sec-
ond argument to ArchDiff. So, if we express differencing and
merging as functions:

d := diff(arch1, arch2)
merge(arch1, d) == arch2

It is possible, however, to merge a patch into a new
architecture, different than the “before” architecture that it was
originally created from. So:

d := diff(arch1, arch2)
merge(arch3, d) == ???

Whether this merge will be successful depends on how similar
arch3 is to arch1. If the diff indicates the addition of a link
with an endpoint on a component called comp1, and comp1 is
not present in arch3, then this will result in a dangling
(broken) link. As explained in the next section, design critics
can determine whether the application of a patch to an
architecture description will create a valid result or not.

3.3. Analyzing the Result of an Architectural Change
Depending on the nature of the system being repaired,

varying levels of analysis may need to be performed to deter-
mine whether a particular repair is a valid one. Some kinds of
analysis are fairly straightforward and universal. For instance,
a broken link (an architectural connection with one endpoint
missing) would be considered invalid in almost every situa-
tion. Some kinds of analysis depend on constraints at the level
of an architectural style. For instance, a particular style may
prohibit components from being connected directly without
an intervening connector, or may prohibit cycles of connec-
tion. Specific applications may have yet-more specific con-
straints. For instance, there may be only one database
component permitted in a particular system. Undoubtedly,
many systems will want to delay a repair until there is confi-
dence that the result of a repair will not violate these con-
straints.

In the general case, it is unlikely that any single analysis
tool or constraint check will be able to determine whether an
architectural repair is valid or not. However, developing a
monolithic analyzer for every self-healing application is not
practical, since many types of analysis will be shared by dif-
ferent systems (broken link analysis will be useful to almost
any system, no-directly-connected-components analysis will
be useful to any system whose architectural style prohibits
such connections).

To support reuse of existing analysis tools and rapid
development and integration of new tools, we have developed
a framework supporting the use of design critics for architec-
ture analysis. This framework is a part of the ArchStudio 3
tool suite. Each design critic monitors open architecture
descriptions in the architecture for changes. When a change is
made, the design critics check the description for any prob-
lematic issues, which they then report to a central issue data-
base. If a change was made in a part of the architecture
description irrelevant to a particular critic, that critic can
choose not to perform any analysis at all. ArchStudio 3 ships
with a set of base classes for critics that make it relatively easy
to implement new critics, since these base classes perform



most of the boilerplate duties of a critic (monitoring for archi-
tecture description change events, for example).

Critics collaborate entirely through the central issue
repository, using it as a ‘blackboard’ for issue data. This
makes it easy to create ‘composite’ critics whose analysis is
partially or wholly based on the output of other critics. For
instance, we have created an AEM Critic that determines
whether an architecture description contains enough data for
the Architecture Evolution Manager to instantiate and manage
the architecture. It bases its decision entirely on the output of
other critics that each verify one sub-constraint of that high-
level goal, such as ‘no broken links’ and ‘each component and
connector must be mapped to an implementation.’

Our approach can be applied to self-healing systems by
using critics to perform a “what-if” analysis on the affect of a
possible repair. A copy is made of the architecture description
of a system about to undergo repair. ArchMerge merges the
proposed repair diff into the copied description. Seeing this
change, the design critics will go to work determining if the
new description is valid. If all appropriate critics finish their
analysis and have not reported any issues with the changed
architecture description, then a repair planning agent can have
confidence that making the same change to the running sys-
tem will be successful. In this case, the repair diff would be
applied, using ArchMerge, to the description of the running
system, and the repair would be performed as a result. If,
however, issues are reported, then replanning can be per-
formed, using the critic-identified issues as data to avoid simi-
lar problems in the replanning.

3.4. Executing a Repair Plan
Once a repair plan is chosen, expressed, and analyzed, it

must be executed. Any architectural changes that have to be
made must be supported by the underlying infrastructure. That
is, an infrastructure that does not support the addition or
removal of components in a software system is unsuitable for
this approach. In our work so far, evolution has been done on
a development framework for event-based software architec-
tures called c2.fw [2]. c2.fw is a Java library that eases devel-
opment of event-based software systems in Java. c2.fw
supports event based architectures with arbitrary topologies,
although it provides additional classes to specifically support
the C2-style [12] topology. It provides a set of useful base and
boilerplate classes for components, connectors, links, etc., as
well as a runtime infrastructure that allows a running applica-
tion to change its topology. It supports the ability to control
components’ and connectors’ access to threads, so it can start,
stop, suspend, and resume individual components and connec-
tors as necessary. While our work to date has focused on
c2.fw as the underlying architecture framework, many similar
frameworks have been developed [12] that support other lan-
guages (C++, Ada) and specific platforms (UNIX, PocketPC).

In our approach, changes to a software architecture are
made as a result of a change to the architecture model, rather
than the model simply being a passive reflection of the run-
ning system. Inside the ArchStudio 3 environment, the Archi-
tecture Evolution Manager (AEM) component starts running
systems by using the data in xADL 2.0 architecture descrip-
tions. When an architecture is started, the architecture descrip-
tion is considered by the AEM to be “bound” to the running
system. Whenever a change is made to the architecture
description, ArchStudio’s internal repository for xADL 2.0
files emits an event describing the change, which AEM listens
for. These changes are expressed at a lower level than an
architectural diff, in terms of changes in individual elements
and attributes in the architecture description, so as to capture

every type of change that can happen to a xADL 2.0 docu-
ment. ArchStudio’s internal repository supports transactional
changes, so sets of changes (as occur in an architecture merge
operation) are performed atomically and reported in a single
event.

When AEM receives a change notification on a bound
architecture description, it examines the notification to deter-
mine if the structure of the architecture has changed. If it has,
it makes appropriate calls to the c2.fw run-time infrastructure
to change the running system. Currently, the evolution policy
supported by AEM is fairly straightforward. The steps in this
policy are:

1. Components and connectors about to be removed are given
an opportunity to execute cleanup code (if necessary), send
data about their state to another component for a replace-
ment to retrieve later, or send other final messages.

2. Components and connectors bordering the affected area(s) in
the architectural topology are suspended, preventing mes-
sages from being sent to components or connectors while
they are being removed or added.

3. Components, connectors, and links are removed and added
as defined in the change. Because affected areas are sus-
pended, the ordering of additions and removals is irrelevant,
but we plan to investigate change-ordering issues more thor-
oughly in the future to see if this holds in all cases.

4. Components and connectors bordering the affected area(s)
are resumed and new components/connectors are given an
opportunity to send out initial messages.

While this policy is clearly not sufficient for every single
type of repair, we have found that it is sufficient for many
applications, such as those without strict timing constraints. In
giving affected components and connectors the opportunity to
gracefully suspend, shut down, and start up, architectural
repairs can be made much safer than simply performing
changes immediately.

4. RELATED WORK

In addition to the work that is mentioned in Section 2,
several other papers and approaches have influenced our over-
all approach and technologies.

Schmerl and Garlan [11] have also developed an architec-
ture-based approach to self-healing systems. Their approach
focuses more on detecting when to make a particular repair,
and choosing that repair, based on architectural styles. In their
approach, an architectural style is a set of formally specified
constraints over an architecture; a constraint violation is cause
for inducing a repair. The primary difference between their
approach and ours is that, in their approach, repair operations
are pre-specified in the system code. Our approach does not
require that the system make any assumptions about what
sorts of repairs can/will be made in advance, therefore open-
ing up the possibility of making repairs that were planned
after the system was developed and deployed.

Kramer and Magee [6] have examined the problem of
reliably and safely evolving running software systems, and the
interaction between the evolution agent and the component
behavior in the running software system. In particular, their
concept of quiescence and the conditions under which a sys-
tem can be safely evolved are important in the context of self-
healing systems. Our tools thus far implement a simple notion
of quiescence by suspending all bordering elements before an



evolution takes place, but we fully plan to experiment with
integrating these ideas into our tool set in the near future.

Formal approaches can inform our work as well. In partic-
ular, Wermelinger [14] describes an extension to Kramer and
Magee’s notion of quiescence that attempts to minimize dis-
ruption when evolving a system’s architecture. As in our
method, Wermelinger’s approach “freezes,” or quiesces, com-
ponents by suspending the connectors around the affected
area. The work also addresses hierarchically constructed sys-
tems, something which we will consider in the future.

The CHAM approach [4,14] offers a formal way to think
about architectural reconfiguration in terms of ‘molecules’
and ‘reactions.’ In this case, components (or collections of
components) can be represented as atoms, connected into
molecules. Reconfigurations are specified as reactions. Pro-
vided with, an appropriate set of reaction rules, it is possible
to determine whether a certain reconfiguration is valid, since
all valid reconfigurations would be specified with in the reac-
tion rules. Use of the CHAM approach and associated tools
may make it possible to prove properties of systems before
and after reconfiguration as well. Challenges in integrating the
CHAM work with our approach include determining whether
the CHAM representation of molecules can be mapped onto
some extension of xADL 2.0 (or the language as it exists
now), and determining how to best implement the reconfigu-
rations based on reactions. However, this approach does offer
several interesting directions with regard to implementing
planning agents (i.e. using reaction rules as the basis for
choosing or constructing repair plans), an area of future work
for us.

Rutherford et. al. [10] describe an approach to system
evolution that uses Enterprise JavaBeans as the underlying
component model. Their approach shares some similarities
with ours, notably, the use of XML-based reconfiguration
scripts driving an infrastructure that supports a basic reconfig-
uration API. However, their work does not maintain an archi-

tecture model of the system as the basis for reconfiguration,
and does not yet present a strategy for analyzing the results of
a change.

5. CONCLUSIONS AND FUTURE WORK

Our long-term approach can be considered a refinement
of the approach described in [8], exploring tools and tech-
niques that provide more flexibility or reliability in system
reconfiguration in general than have previously been used.
Our implementation strategy has been bottom-up; that is,
starting with the ability to execute and specify architecture
changes before building automated tools for making decisions
about when and how to repair a system. The ability to specify
and execute a change is a prerequisite for being able to plan
and initiate changes; without the language for specifying a
change or the infrastructure to enact it, a planning phase will
have no output target. Fig. 2 diagrammatically summarizes
the steps of our approach.

To date, we have created a significant infrastructure to
support these activities. Software architectures and their
changes are described in xADL 2.0, an extensible architecture
description language. Software systems are instantiated and
managed using a flexible framework for building event-based
systems, c2.fw. The ArchStudio 3 development environment,
also built atop c2.fw, maintains and manages the mapping
between architecture descriptions and running systems, and
also hosts design critics, which can be used to analyze archi-
tecture descriptions or the impact of a change before it is
made.

In the future, we plan to continue extending this infra-
structure to better fit a complete approach for self-healing sys-
tems. In the short-term, we plan on improving the reliability
and safety of repairs by integrating Kramer, Magee, and Wer-
melinger’s work on quiescence into the Architecture Evolu-
tion Manager. We also plan on creating new design critics that

Architecture 1

Architecture Evolution
Manager

xADL 2.0 description 
of software system

Instantiates system 
from description

Running System 1

Running, self-healing 
software system

Fault Detection/
(Re-)Planning Agent

Detects faults,
plans repairs

Remove

Repair plan expressed 
as an architectural 

diff

watches

Design Critics

‘What-if?’ analysis 
checks repair validity.

problem
detected

Differencing Engine

cr
ea

te
s

Merging Engine

Determines difference 
between architectures

no problem
detectedApplies diff to description 

of running architecture

Architecture 2

xADL 2.0 description 
of repaired system

creates

Architecture Evolution
Manager

Sees architecture change, 
evolves running system.

Running System 2

Running system
repaired

evolves

Legend:

Existing Tool

Proposed Tool Document

Running
System

Merging Engine

Performs “What-if?” merge
Add

Diff 1

Architecture 1

Fig. 2. Diagram showing the process steps of our approach, indicating completed tools and tools that we propose to build.



can check more sophisticated constraints on architecture
descriptions and change descriptions.

In the medium-term, we plan to extend our tool-set to
fully support distributed applications. Repairing distributed
systems is more complex than repairing single process sys-
tems if realistic assumptions about the distributed environ-
ment are made. Many previous approaches to evolving
distributed systems assume that the architecture description
is available to every process in the system, that unplanned
failures will not occur, or that there is a single, distinguished,
central evolution agent that is assumed not to fail. Outside
the context of these simplifying assumptions, distributed sys-
tem repair requires better methods and tools for fault toler-
ance, both in the individual system components and in the
infrastructure itself. We also plan to investigate how we can
leverage common middleware packages to support a larger
variety of legacy systems with our approach. For instance,
message-oriented middleware supports many of the opera-
tions required by our infrastructure (independent components
communicating via messages, with no assumption of shared
memory, etc.) We aim to find out whether different types of
middleware can augment or be used in place of a framework
like c2.fw.

In the long-term, we plan to complete our vision of archi-
tecture-based self-healing systems by investigating the detec-
tion of faults in various classes of systems and automatic
planning of architecture-based repairs. We believe that there
is a strong potential for product-family architecture work to
contribute to the repair planning phase. Product family archi-
tectures describe a set of valid, closely-related architectures,
and therefore can serve as potential target architectures for
repair. For instance, a product family might define one mem-
ber of a system in “normal” operating mode, and one in
“degraded” mode (for cases when a component fails or
resources are constrained). Rather than having to invent a
repair from first principles, a planning agent could use the
“degraded” mode family member as a potential pre-verified
target of a repair strategy. We also plan to investigate other
methods of repair planning, possibly using artificial intelli-
gence techniques.

6. ACKNOWLEDGEMENTS1

The authors would like to thank Chris van der Westhui-
zen and Ping Chen for their contributions to architectural dif-
ferencing and merging.

7. REFERENCES

[1] ArchStudio 3. URL: http://www.isr.uci.edu/projects/
archstudio/

[2] ArchStudio 3 Foundations - c2.fw. URL: http://
www.isr.uci.edu/projects/archstudio/c2fw.html

[3] Dashofy, E.M., van der Hoek, A., and Taylor, R.N., “An
Infrastructure for the Rapid Development of XML-
based Architecture Description Languages.” In Proc. of
the 24th International Conference on Software Engi-

neering (ICSE2002), Orlando, Florida, May 2002.
[4] Inverardi, Paola and Wolf, Alexander. “Formal specifi-

cation and analysis of software architectures using the
chemical abstract machine.” In IEEE Transactions on
Software Engineering, 21(4):373–386, April 1995.

[5] Khare, R., Guntersdorfer, M., Oreizy, P., Medvidovic,
N., and Taylor, R.N. “xADL: Enabling Architecture-
Centric Tool Integration With XML.” In Proceedings of
the 34th Hawaii International Conference on System
Sciences (HICSS-34), Maui, Hawaii, January 3-6, 2001. 

[6] Kramer, J. and Magee, J. "The Evolving Philosophers
Problem: Dynamic Change Management." In IEEE
Transactions. on Software Engineering, SE-16, 11
(1990), 1293-1306.

[7] Medvidovic, N., Oreizy, P., and Taylor, R.N. "Reuse of
Off-the-Shelf Components in C2-Style Architectures" In
Proceedings of the 1997 International Conference on
Software Engineering (ICSE'97), Boston, MA, May 17-
23, 1997, pp. 692-700. 

[8] Oriezy, P., Gorlick, M.M., Taylor, R.N., Johnson, G.,
Medvidovic, N., Quilici, A., Rosenblum, D., and Wolf,
A. An Architecture-Based Approach to Self-Adaptive
Software. In IEEE Intelligent Systems 14(3):54-62,
May/June 1999.

[9] Robbins, J., Hilbert, D., and Redmiles, D. “Using Critics
to Analyze Evolving Architectures.” In Proceedings of
the Second International Software Architecture Work-
shop (ISAW-2), 1996.

[10] Rutherford, M.J., Anderson, K., Carzaniga, A., Heim-
bigner, D., and Wolf, A.L. “Reconfiguration in the
Enterprise JavaBean Component Model” In Proceed-
ings of the IFIP/ACM Working Conference on Compo-
nent Deployment, Berlin, 2002, pp. 67-81.

[11] B. Schmerl and D. Garlan. “Exploiting Architectural
Design Knowledge to Support Self-repairing Systems.”
In Proceedings of the Fourteenth International Confer-
ence on Software Engineering and Knowledge Engi-
neering, Ischia, Italy, July 15-19, 2002.

[12] Taylor, R.N., Medvidovic, N., Anderson, K.M., White-
head, E. J., Robbins, J., Nies, K., Oreizy, P., and
Dubrow, D. "A Component- and Message-Based Archi-
tectural Style for GUI Software" In IEEE Transactions
on Software Engineering, June 1996.

[13] van der Westhuizen, C. and van der Hoek, A. “Under-
standing and Propagating Architectural Change.” In
Proceedings of the Working IEEE/IFIP Conference on
Software Architecture 2002 (WICSA 3), Montreal, Can-
ada, August 2002.

[14] Wermelinger, M. Specification of Software Architecture
Reconfiguration. Ph.D. Thesis, September 1999.

[15] xADL 2.0 Homepage. URL: http://www.isr.uci.edu/
projects/xarchuci/

1.Effort sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-00-2-0599. Effort also
partially funded by the National Science Foundation under grant number
CCR-0093489. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA), the Air Force Lab-
oratory, or the U.S. Government.


