Using Off-The-Shelf Middleware to Implement Connectors in
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ABSTRACT
Software architectures promote development focused on
modular building blocks and their interconnections. Since
architecture-level components often contain complex
functionality, it is reasonable to expect that their interactions
will also be complex. Modeling and implementing software
connectors thus becomes a key aspect of architecture-based
develonment
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technologies such as RMI, CORBA, ILU, and ActiveX
provide a valuable service in building applications from
components. The relation of such services to software
connectors in the context of software architectures, however, is
not well understood. To understand the tradeoffs among these
technologies with respect to architectures, we have evaluated
several off-the-shelf middleware technologies and identified
key techniques for utilizing them in implementing software
connectors. Our platform for investigation was C2, a
component- and message-based architectural style. By
encapsulating middleware functionality within software
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component interchangeability, substrate independence and
structural guidance with new capabilities of multi-lingual,
multi-process and distributed application development in a
manner that is transparent to architects.
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1 INTRODUCTION

Software architectural styles, such as UNIX’s pipe-and-filter
style or blackboard architectures in artificial intelligence, are
key design idioms [5, 18]. Software development based on
common architectural idioms has its focus shifted from lines-
of-code to coarser-grained architectural elements (software
components, connectors, etc.) and their overall interconnection
structure. An issue associated with architectures that is
magnified in comparison with conventional software design
and programming is the existence of software connectors as
top-level constructs.

In programming languages, connectors are primitive and
implicit in, e.g., procedure calls and global variables. Since
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interactions will be complex as well. Modeling and
implementing software connectors with potentially complex
protocols thus becomes a key aspect of architecture-based
development [1, 14, 23]. In architectures, connectors may, €.g.,
be separately compilable message routing devices, shared
variables, table entries, buffers, instructions to a linker,
dynamic data structures, procedure calls, initialization
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parameters, client-server protocols, pipes, SQL links between
a database and an application, and so forth [3, 21].

While practitioners are typically intimately familiar with
“connecting” software modules via, e.g., procedure calls, their
understanding of other interconnection mechanisms, e.g.,
client-server protocols and message routers, is often minimal.
Several commercial and research off-the-sheif (OTS)
middleware software systems that explicitly implement such
available: Field [20],
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mechanisms are

interconnection
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SofiBench {2}, Tooltalk [7], Q [9]. Polylith [19], DCE [21],
CORBA [16], ILU [26], COM/DCOM [22], and ActiveX [3].
Also, several object-oriented (OO) programming languages
provide remote procedure call (RPC) mechanisms. A
representative example is Java’s Remote Method Invocation
(RMI) system [24]. Unfortunately, the applicability of these
mechanisms and tools to software architectures is not well
understood. They are rarely used by architecture researchers in
practice. With the exception of UniCon [23], the focus of
researchers has instead generaily been on formal modeiing of
connector protocols with implementation support for simple
connections nnl\l

Consequently, we have begun exploration of these issues and
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for using OTS middleware in the context of software
architectures. Qur goals were to understand the issues in
adapting the different technologies and the tradeoffs among
the levels of support they provide for the needs of software
architectures. Our impiementation infrastruciure {i1, 12] has
enabled us to experiment with incorporating several existing
middleware technologies into C2 architectures. We have built
software connectors that use four middleware packages: the Q
system, the Polylith software bus, Java’s RMI facility, and
ILU’s distributed object system. In doing so, we developed and
experimented with a set of techniques for integrating
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of this work were reported in [10]. Our results to date suggest
that our approach is general enough to be applicable across
middleware technologies.
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The remainder of this paper is organized as follows. Section 2
presents a brief overview of the support for connectors in
current software architecture research. Section 3 summarizes
the C2 architectural style and implementation infrastructure.
This section also discusses an example C2-style architecture,
which was used to demonstrate the integration of the
middleware packages into C2 connectors. Sections 4 and 5
discuss our general approach to using middleware with
software connectors and the results of doing so, respectively.
Section 6 discusses our findings and the applicability of these
findings to software architectures in general. A discussion of
future work rounds out the paper. ‘

2 OVERVIEW OF THE ROLE OF CONNECTORS IN
SOFTWARE ARCHIECTURES »

The key role of connectors in architecture-based software
development has been accepted by the majority of the software
architecture community. For example, this is reflected in
connectors becoming a part of the “core ontology” in the
ACME architecture interchange language [4]. However,
current architecture research is characterized by inconsistent
approaches to fulfilling this key role of connectors. Three
projects representative of the state of the practice are Wright
[1], UniCon [23], and Rapide [8].

Wright is an architecture description language (ADL) whose
particular focus is formally specifying protocols of imefaction
among components in an architecture. To this end, it employs a
subset of communicating sequential processes (CSP) [6].
Given an architectural specification, Wright is able to
determine the interaction characteristics of components
communicating through any given connector, e.g., whether
they will deadlock. However, Wright does not provide any

support for the (correct) implementation of connectors. |

UniCon, on the other hand, focuses on implementing
connectors. To that end, it supports a predefined set of
connectors: pipe, file [/O, procedure call(s), data accéss(es)
and remote procedure call(s). UniCon’s shortcoming is, that it
supports a limited set of connectors. Several of the connectors
UniCon currently supports are simple and ' their
implementation is either already provided by the chosen
underlying programming language or is otherwise trivial.
UniCon provides an elaborate mechanism and accompanying
process for specifying new connector types with; more
complex protocols. However, it is unclear how or whether this
mechanism can be used to incorporate any of the¢ OTS
middleware technologies discussed in Section 1. [

Rapide is an ADL whose accompanying toolset provides
extensive modeling, analysis, simulation, and code gen%:ration
capabilities. However, Rapide does not model connectors as
first-class entities, but rather specifies them in-line. This limits
their reusability and renders their verification more difficult, as
each connection must be analyzed individually.
Implementation strategies and guidelines are thus required for
each individual connector, rather than each connector tylpe.

There is, therefore, a need for an approach where powerful and

extensible connector modeling formalisms are coupled with

connector implementation support and architecture simulation

and code generation. This is a complex task. Our hypothesis is
|
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Fig. 1. A sample C2 architecture. Jagged lines represent the parts of
the architecture not shown.

that implementing connectors with these properties can be
made easier by building upon existing middleware
technologies.

3 OVERVIEW OF THE C2 ARCHITECTURAL
STYLE

We chose the C2 architectural style as a foundation upon
which to explore issues of integrating middleware with
software connectors. The C2 style has an explicit notion of
connectors as first-class entities and provides facilities to
explore specific properties of software connectors such as
filtering, routing, and broadcasting (described in more detail
below). Further, the style is well-suited to a distributed
environment, allowing us to leverage the networking
capabilities of middleware technologies. The style supports a
paradigm for composing systems in which components may be
running in a distributed, heterogeneous environment without
shared address spaces, architectures may be changed
dynamically, multiple users may be interacting with the
system, multiple user interface toolkits may be employed,
multiple dialogs may be active (and described in different
formalisms), and multiple media types may be involved.

For those unfamiliar with the C2 style, it is described in [25].
The C2 style can be informally summarized as a network of
concurrent components hooked together by connectors, i.e.
message routing devices, Components and connectors both
have a defined top and bottom. The top of a component may be
connected to the bottom of a single connector and the bottom
of a component may be connected to the top of a single
connector. There is no bound on the number of components or
connectors that may be attached to a single connector (see
Fig. 1). All communication in a C2 architecture is solely
achieved by exchanging messages. Message-based
communication is extensively used in distributed environments
for which C2 is suited.

Each component may have its own thread(s) of control. This
simplifies modeling and implementation of multi-component,
multi-user, and concurrent applications and enables
exploitation of distributed platforms. Note that separating
components into different threads of control is not a
requirement. Moreover, a proposed architecture is distinct
from its implementation(s) so that it is indeed possible for
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Fig. 2. C2 connectors have context reflective interfaces. Each C2

connector is capable of supporting any number of C2 components.

(a)  Software architect selects a set of components and a connector
from a design palette. The connector has no communication
ports, since no components are attached to it.

(b-d) As components are attached to the connector to form an
architecture, the connector creates new communication ports
to support component intercommunication.

components to share threads of control. This separation of

architecture from implementation is a key aspect of our
approach to integrating middleware technologies into C2, as
discussed in Section 4.

Finally, there is no assumption of a shared address space
among C2 components. Any premise of a shared address space
could be unreasonable in an architectural style that allows

composition of heterogeneous, highly distributed components, .

developed in different languages, with their own threads of
control, internal structures, and domains of discourse.

3.1 C2 Connectors

Connectors bind components together into a C2 architecture.

They may be connected to any number of components as well
as other connectors. A connector’s primary responsibility is
the routing and broadcast of messages. A secondary
responsibility is message filtering.

Connectors may provide a number of filtering and broadcast
policies for messages, such as the following:

* no filtering — each message is sent to all connected com-
ponents on the given side of the connector (top or bottom).

* notification filtering — each notification is sent to only
those components that have registered for it.

* prioritized — the connector defines a priority ranking over
its connected components, based on a set of evaluation cri-
teria specified by the software architect during the con-
struction of the architecture. This connector then sends a
notification to each component in order or priority until a
termination condition has been met.

* message sink — the connector ignores each message sent
to it. This is useful for isolating subsystems of an architec-
ture as well as incrementally adding components to an
existing architecture. A developer can connect a new com-
ponent to the architecture and then “turn on” its connector,
by changing its filtering policy, when the component is
ready to start sending and receiving messages.

A unique feature of C2 connectors is that they have context
reflective interfaces: a C2 connector is not defined to have a
particular interface; instead, its interface is a function of the
interfaces of components attached to it (see Fig. 2). A given
C2 connector must be capable of supporting (message-based)
communication among any C2 components. We have
exploited this feature of C2 connectors to support both
specification-time and run-time evolution of C2-style
architectures [14, 15].

C2 connectors and components are joined with intermediary
entities called “ports.” Ports form message pathways between
connectors and components, but they do not play an active role
in filtering messages.

3.2 Implementing C2 Style Architectures

The ultimate goal of any software design and modeling
endeavor is to produce the executable system. An elegant and
effective architectural model is of limited value unless it can be
converted into a running application. Doing so manually may
result in many problems of consistency and traceability
between an architecture and its implementation. For example,
it may be difficult to guarantee or demonstrate that a given
system correctly implements an architecture. Furthermore,
even if this is currently the case, one has no means of ensuring
that future changes to the system are appropriately traced back
to the architecture and vice-versa. It is, therefore, desirable, if
not imperative, for architecture-based software development
approaches to provide source code generation tools.

To support implementation of C2 architectures, we developed
an extensible framework of abstract classes for C2 concepts
such as components, connectors and messages, as shown in
Fig. 3. This framework is the basis of development and
middleware integration in C2. As we will discuss, the
framework encapsulates all access to integrated middleware,
ensuring that the use of middleware is transparent to an
architect, and, indeed, to the implementor of a particular
architecture. In Section 5, we will show that middleware can
be further encapsulated completely within the connector
elements of the framework. The framework implements
interconnection and message passing protocols. Components
and connectors used in C2 applications are subclassed from
the appropriate abstract classes in the framework. This
guarantees their interoperability, eliminates many repetitive
programming tasks, and allows developers of C2 applications
to focus on application-level issues. The framework supports a
variety of implementation configurations for a given
architecture: the entire resulting system may execute in a
single thread of control, or each component may run in its own
thread of control or operating system (OS) process.
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Fig. 3. C2 object-oriented class framework.

3.3 An Example C2 Application

The example application that was used in our 1nvest1gauon of
OTS middleware integration in C2 is a version of the video
game KLLAX. A description of the game is given in Fig. 4. This
particular application was chosen because game play imposes
some real-time constraints on the application, brmgmg
performance issues to the forefront.

The architecture of the system is depicted in Fig. 5. The
components that make up the KLAX game can be divided into
three logical groups. At the top of the architecture are the
components which encapsulate the game’s state, Thé game
state components respond to requests and emit notifications of
internal state changes. Notifications are directed to the next
level where they are received by both the game logic
components and the artist components.

The game logic components request changes of game state in
accordance with game rules and interpret game state change
notifications to determine the state of the game in progress.

!
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KLAX Chute :
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dr(()jp at random times
locations.

KLAX Palette

Palette catches tiles commg
down the Chute and drops
them into the Well.

KLAX Well |
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the same color are removed
and any tiles above them
collapse down to fill in the|
newly-created empty spacés.

KLAX Status ,

Score: 105
Number of Lives: 3

Fig. 4. A screenshot and description of our 1mplementat10n of the
KLAX video game. ‘
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Fig. 5. Conceptual C2 architecture for KLAX. Shaded ovals
represent process boundaries in the three-process implementations
of KLAX.

The artist components also receive notifications of game state
changes, causing them to update their depictions. Each artist
maintains the state of a set of abstract graphical objects which,
when modified, send state change notifications in the hope that
a lower-level graphics component will render them on the
screen.

The GraphicsBinding component receives all notifications
about the state of the artists’ graphical objects and translates
them into calls to a window system. User events, such as a key
press, are translated into requests to the artist components.

The KLAX application was used as a testbed for our research
on middleware. We used the partitioning shown in Fig. 5 for
testing OTS middleware technologies, although other
partitionings are possible. Two KLAX implementations were
built using the C++ and Java frameworks shown in Fig. 3.
Both implementations consist of approximately 8000 lines of
commented code, in addition to the base framework’s 3000
lines of code. A variation of the architecture shown in Fig. 5
was also used as the basis of a distributed, multi-player KLAX
application implemented using the Java framework. In this
variation each player executes a copy of KLAX on his own
machine. A player competes against other game participants
by issuing requests to a central GameServer to, e.g., add an
extra tile to a given player’s chute. The GameServer, in turn,
notifies the appropriate players of the changes to their states in
response to their opponent’s action.

Performance of the different implementations of KLAX easily
exceeds human reaction time if the ClockLogic component is
set to use short time intervals. Although we have not yet tried
to optimize performance, benchmarks indicate that the C++
framework can send 1200 simple messages per second when
sending and receiving components are in the same process,
with the Java framework being somewhat slower. In single-



player KLAX, a keystroke typically causes 10 to 30 message
sends, and a tick of the clock typically causes 3 to 20 message
sends

4 THE ROLE OF MIDDLEWARE

Middleware is a potentially useful tool when building software
connectors. First, it can be used to bridge thread, process and
network boundaries. Second, it can provide pre-built protocols
for exchanging data among software components or
connectors. Finally, some middleware packages include
features of software connectors such as filtering, routing, and
broadcast of messages or other data.

4.1 Middleware Evaluation Criteria

When evaluating OTS middleware technologies, we focused
on several factors. We do not expect a single technology to
satisfy all of these requirements. The selection process must be
at least partially based on the characteristics and needs of a
specific application:

* inter- and intra-process communication support — a dis-
tributed application is likely to contain a mix of compo-
nents that execute in a single thread of control, in different
threads of control (but in the same process), and in differ-
ent processes, some of which will reside on different
machines. If a given middleware technology effectively
supports only interprocess communication, its utility is
limited and additional types of middleware may need to be
employed. Note that multiple types of middleware in an
application may indeed be preferable, as each may opti-
mize a particular type of communication.

* features of software connectors — a middleware technol-
ogy may only provide the ability for two processes to
exchange data. The needs of software connectors are
broader: event routing (e.g., broadcast, multicast, point-to-
point), filtering, registration, and so forth [17]. If such fea-
tures are not supported, additional infrastructure must be
provided before such a technology may be used in a distrib-
uted architecture, such as the one depicted in Fig. 5.

* platform and language support — software architectures,
and C2 architectures in particular, are intended to support
the development of distributed systems, built out of com-
ponents which are potentially implemented in different
programming languages and executing on multiple plat-
forms. An interconnection technology that supports multi-
lingual and multi-platform applications is thus a better can-
didate for integration than one that does not. The penalties
(e.g., adoption costs, performance) accrued by using a
technology that only supports a single language and/or
platform may outweigh any benefits of using it.

* communication method — similarly to the different types
of connectors at the architectural level (see Section 1),
methods of communication across middleware technolo-
gies vary and can include remote procedure calls (RPC),
message passing, passing object references, shared mem-
ory, and so forth. A middleware technology that is not
suited to an architectural style may cause implementation
difficulties when used in the context of that style. However,
as we will show, it is possible to implement connectors that
make translations from one communication method to
another (e.g. RPC to message-passing) to fit within a given
architectural style.

» ease of integration and use — if integrating an OTS tech-
nology into the implementation infrastructure and/or its
use in an application requires a substantial amount of
effort, its effectiveness and power may be rendered irrele-
vant. For example, if an interconnection tool assumes that
it is the application’s main thread of control, it is not well
suited for use with C2, since C2 mandates that all compo-
nents execute independently of each other. The amount of
work required to integrate Q, Polylith, RMI and ILU (see
Section 5) was relatively minor, typically only requiring
additions of message routing or marshaling code.

» multiple instances in an application — one benefit of dis-
tributed systems is that they do not have to depend on a sin-
gle set of resources, thus avoiding performance
bottlenecks. Analogously, it may be useful to physically
distribute the very tool used to interconnect a distributed
system. Centralized OTS middleware tools that use a single
point of communication form potential bottlenecks and
single points of failure.

* support for dynamic change — for an important class of
safety- and mission-critical software systems, such as air
traffic control or telephone switching systems, shutting
down and restarting the system for upgrades incurs unac-
ceptable delays, increased cost, and risk. Support for run-
time modification is thus a key aspect of these systems. A
middleware technology that does not support dynamic
change is not an adequate candidate for them.

» performance — performance is a key issue in systems with
real-time requirements. For example, in the KLAX appli-
cation from Section 3, several hundred messages may be
generated every second. The ability to efficiently ferry
these messages among the components and across process
boundaries is paramount.

- 4.2 Supporting Cross-Process Communication

Of all the issues noted above, the need for effectively
supporting  inter-process communication is particularly
important to us. Distributed applications require this and most
middleware  technologies emphasize this  capability.
Consequently we focused particular attention on how
middleware could be used to support connectors transparently
spanning process boundaries. After examining the field of
available middleware packages and their capabilities, we
examined four possible approaches to connecting parts of a C2
application running in multiple processes and possibly on
multiple machines. These approaches are independent of the
choice of underlying middleware; they do not depend on the
properties of any particular middleware package. Two of these
approaches divide an architecture along a single
communication port, while the other two do so along a
connector, as indicated in Fig. 5.

4.2.1 Linking Ports across Process Boundaries

The first approach that we examined and attempted to
implement involved linking two C2 ports across a process or a
machine boundary using a middleware package to bridge those
boundaries. All accesses to the middleware technology would
be entirely encapsulated within the port entity and would not
be visible to architects or developers. The single-process
implementation of a C2 connector links two ports together by
having each port contain a reference to the other one. In this
way, the ports can call methods on each other, sending
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Fig. 6. Two communication ports in separate processes comprise a
single “virtual port.” For clarity, we do not highlight component
and connector ports. Shaded ovals represent process boundaries.

messages as method-parameters. Our intent was to simply use
the middleware to exchange port references across process
boundaries and use the existing technique for message passing.

We attempted to implement this strategy, but found that it was
infeasible for several reasons. Most importantly, ports, being
complex objects, were not easily serializable. For each of the
middleware technologies we evaluated, any objects sent across
a process or network boundary must first be serialized into a
byte stream. C2 ports contain references to complex C2
objects to which they are attached (connectors, components,
and entire architectures), which would, in turn, also have to be
serialized ~— hardly a reasonable approach. Secondly,
references to objects are typically not preserved across process
boundaries since all network data is passed by copy instead of
by reference. Thus, even if we could overcome the
serialization issue and pass port objects through the network, a
connection made by using the references to them would not be
preserved over the network. This experience indicated that any
passing of complex objects across a process or network
boundary would be impossible using our available middleware
technology. '

With this knowledge, we refined our approach: rather than
attempting to send whole C2 port objects across process and
network boundaries, we simply sent messages, which consist
only of data and are easily marshaled. In this approach, two
ports are created, one per process, to simulate a single “virtual
port,” as shown in Fig. 6. Rather than sending a reference to
itself to the other port, each port simply sends messages.

4.2.2 Linking Connectors across Process Boundaries

Sharing communication ports across process boundaries gave
us fine-grained control over implementing an architecture as a
multi-process application. However, it required additional
functionality in the C2 implementation framework and ;did not
isolate the change to the appropriate abstraction: the connector.
In order to remedy this, we devised two connector-based
approaches. Both of these approaches consist of implementing
a single conceptual software connector using two of more
actual connectors that are linked across process or network
boundaries. Each actual connector thus becomes a segrnent of
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Fig. 7. Connectors as a primary vehicle for interprocess
communication. A single conceptual connector can be “broken up”
vertically (a) or horizontally (b) for this purpose. Shaded ovals
represent process boundaries.

a single “virtual connector.” All access to the underlying
middleware technology is encapsulated entirely within the
abstraction of a connector, meaning that it is unseen by both
architects and developers.

We call the first approach “lateral welding,” depicted in
Fig. 7(a). Messages sent to any segment of the multi-process
connector are broadcast to all other segments. Upon receiving
a message, each segment has the responsibility of filtering and
forwarding it to components in its process as appropriate. Only
messages are sent across process boundaries.

While the lateral welding approach allowed us to “vertically
slice” a C2 application, we also developed an approach to
“horizontally slice” an application, as shown in Fig. 7(b). This
approach is similar to the idea of lateral welding: a conceptual
connector is broken up into top and bottom segments, each of
which exhibits the same properties as a single-process
connector to the components attached above and below it,
respectively. However, the segments themsetves are joined
using the appropriate middleware.

When used with a middleware technology that supports
dynamic change at run-time, all of these approaches, both
using ports and connectors, can be used to build applications
where processes can join and leave a running application. Only
a small bit of additional infrastructure is required to notify a
running architecture that a new process is joining or leaving
the application.

5 USE OF OTS MIDDLEWARE TECHNOLOGIES

To explore the use of OTS middleware with software
connectors, we chase four representative technologies from
the field of available middleware packages. These were Q, an



RPC system, Polylith, a message bus, RMI, a connection
mechanism for Java“objects, and ILU, a distributed objects
package.

51Q

The Q system [9], developed at the University of Colorado, is
intended to provide interoperability support for multilingual,
heterogeneous component-based systems. Q presents a layer
of functionality between software components communicating
across process boundaries. It is based on remote procedure
calls (RPC) and provides support for marshaling and
unmarshaling of arbitrarily complex type structures. Q also
supports placement of components executing in a single thread
or in multiple threads of control inside a single process. It
ensures the proper communication of multi-threaded
components with other parts of a system. Q addresses the issue
of performance by adding an asynchronous message interface
on top of a standard RPC interface, so that processor time is
used for interprocess communication only when it is known
that data is pending.

Q uses a remote procedure call (RPC) mechanism for
communication, which is dissimilar to C2’s message-based
style. Nonetheless, we easily emulated message passing using
RPC by passing serialized messages as parameters in remote
calls. Q supports systems built in several languages: C/C++,
Ada, Java, Tcl, Lisp, and Prolog. It was originally built for the
UNIX platform, although its Java interface presents the
potential for moving to other platforms. We have made use of
its support for C/C++ and Ada with the intent to exploit its
support for Java in the near future.

Our approach to integrating Q with the C2 implementation
infrastructure consisted of encapsulating Q inside a C2
connector (we refer to it as a “Q-C2 connector” below). Q is
not a software bus, so it does not support typical connector-like
features, such as event registration, filtering, and routing.
However, this layer of support is added easily in a Q-C2
connector.

A Q-C2 connector exports the same interface as a regular C2
connector, so architects attach components to it in the usual
manner. Internally, however, a Q-C2 connector provides a
mechanism for communicating across process boundaries via
Q. At each process boundary, a conceptual C2 connector is
“broken up” into two or more Q-C2 connectors, one per
process, as shown in Fig. 7b. When using Q-C2 connectors, all
processes containing C2 subarchitectures must register with a
single “name server.” All links across process boundaries are
specified in the Q-C2 connector, by naming the attached
connectors, and are maintained by Q at execution time.
Clearly, care must be taken to ensure that there are no naming
conflicts, i.e., that multiple Q-C2 connectors do not share a
name.

Given that we can explicitly specify the connections among Q-
C2 connectors in an architecture, a single instance of Q is
sufficient to support the needs of an architecture. Since Q is
UNIX-based, it supports addition and removal of processes at
execution time. Any additional support for dynamism, such as
transactions, state preservation during change, or component
(i.e., process) replacement, must be built on top of Q.

We used Q to generate a multi-process version of KLAX,
shown in Fig. 5. Connectors IPconnl and IPconn2 were used
at process boundaries. The rest of the application remained
identical to single-process KLAX. This three-process
configuration allowed us to explore issues in supporting
multilingual applications in C2. For example, we were able to
replace the “middle” process in KLAX, where the TileArtist
component and both connectors were initially implemented in
C++, with their Ada implementations. This can be done at
specification or execution time. If the change is made at run-
time, a part of the game state is lost, as no one receives the
notifications issued by components in the “top” process or
requests issued by the “bottom” process components during
the course of the change. The performance of this variation of
KLAX easily exceeded human reaction time if the ClockLogic
component used short time intervals.

5.2 Polylith

The Polylith software bus was developed at the University of
Maryland [19]. Polylith was built to allow several parts of an
application to communicate across process boundaries using
messages made up of arbitrarily complex type structures.
Polylith uses messages for communication, which made it
well-suited for implementing C2-style connectors. Polylith can
transfer messages among processes running on a single
machine or on multiple machines using the TCP/IP
networking protocol. The Polylith toolkit is implemented in C
and runs on several variants of UNIX. Polylith supports
applications developed in C/C++; support for additional
programming languages is under development.

Polylith is inherently built to communicate among UNIX
processes. Although there is no support for multithreading in
Polylith, multiple threads within a process are allowed in
principle. Polylith has support for marshaling and
unmarshaling of C basic types and structures. The Polylith bus
itself runs in its own process and acts as a message queue for
other processes, which are individually responsible for
periodically sending and retrieving messages to and from the
bus. .

Like the Q-C2 connector, the “Polylith-C2” connector is an
extension of the standard, in-process C2 connector. All access
to Polylith is done within the C2 connector, and is transparent.
Components can attach themselves to a Polylith-C2 connector
in the usual manner.

The process-level structure of a C2 application that uses
Polylith is defined statically, i.e., at compile time, using a
proprietary language called MIL. The MIL code can be
generated automatically in a fairly straightforward manner. As
a software bus, Polylith has the ability to route messages at the
process level, but it was necessary for us to implement our own
intra-process routing mechanisms. There is no support for
message filtering in Polylith.

The current Polylith toolkit uses the UNIX process scheduler
for all process scheduling. Polylith applications with specific
scheduling needs must explicitly make system-level calls from
within the application. Such performance limitations became
problematic when Polylith-C2 was used in the implementation
of the KLAX application from Section 3. The implementation
suffered from poor performance due to the UNIX process
scheduler giving large time slices to each process, resulting in



messages being handled in bursts rather than in a fluid manner
This may be unacceptable in a real-time application such as
KLAX. The authors of Polylith acknowledge this problem; an
experimental, as yet unreleased version of Polylith alleviates

this shortcoming.
5.3 RMI
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Java’s Remote Method Invocation (RMI) [24] is a technology
developed by Sun Microsystems to allow Java objects to
invoke methods of other objects across process and machine
boundaries. RMI supports several standard distributed
application concepts, namely regisiration, remote method
calls, and distributed objects Currently, RMI only supports
Java applications, but there is indication of a forthcoming link

between RMI and CORBA that would remedy this.

Each RMI chiect that is ta bhe chared in an annlication defin
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public interface (a set of methods) that can be called remotely.
This is similar to the RPC mechanism of Q. These methods are
the only means of communication across a process boundary
via RMI Because RMI is not a software bus it has no concept
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serialization and deserializauon capabihties handie marshalmg
of basic and moderately complex Java objects, including C2
messages.

RMI is fully compatibl

RMI lly compatil
built into the Java language, and is therefore well suited
multithreaded application. It allows communication among
objects running in different processes which may be on
different machines. Communication occurs exclusively over
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the TCP/IP netwoerg pI'O[OCOl

Like the Polylith- and Q-integrated connectors, the RMI-C2
connector we developed has all the capabilities of a single-
process C2 connector. Additionally, it has the ability to register

and deragcigtar itcalf at rin_tima with tho Taua RDMT nama
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server, and to be linked to other registered connectors. All
access to RMI facilities is encapsulated within the connector
and is transparent.

Minimal modification was required to convert the existing C2
KLAX application into a multi-process application that uses
RMI-C2 connectors. RMI supports application modification at
run-time, a capability enabled by Java’s dynamic class loading.
The performance of the three-process implementation of
KILAX usine RMI-C?2 wags satisfactorvy
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the KLAX application built using RMI-C2 connectors was
multiplayer KLAX. This variation allowed players to remotely
join a game already in progress and compete agamst other
participants.

sy
Anather variation of
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RMI's properties make it ideal for use within a Java C2
application. Its native support in Java 1.1 makes it more
available to architecture implementors than third party
alternatives. Also, using software connectors that work with

RMI does not prpr‘lndp an annhcahnn ln']plpmpn{pd r\arhallv or

completely in Java from using another middleware technology,
such as Q or ILU, as well.

54 ILU !

Xerox PARC’s ILU (Inter-Language Unification) [26] was
developed as a free CORBA-like object brokering system.
Functionally, it is similar to Java RMI, allowing objects to call
methods on other objects across process or network

—
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boundaries. ILU is different from RMI in that it has wide
platform and language support: C, C++, Java, Python, LISP,
Modula-3, Perl and Scheme on both Windows and UNIX
platforms. The current ILU implementation can be thought of

as a CORBA Object Request Broker (ORB), but ILU is not yet
fully CORBA compliant.

Like RMI, each ILU object that is to be shared in an
application defines a public set of methods that can be called
remotely. There is no inherent concept of messages in ILU, but
messages can be passed as parameters in remote method calls.
Similarly o Q, ILU has the ability io serialize moderaiely
complex objects across language boundaries. As with other
distributed object systems, references are not preserved across
the serialization boundary. ILU does not include a name
server, but it facilitates object registration through a method
called “simple binding” that is part of the ILU package. Our
integration of ILU with C2 was done using the Java

implementations of the C2 framework and the JLLU package.
impiementiations or tne Lo ramewors package

The ILU-C2 connector thus created has all the capabilities of
an in-process C2 connector, but it is also capable of lateral
connection to ILU-C2 connectors in other processes. Again,
all access to ILU is done entirely within the connector, in a
manner that is {ransparent to architects and developers.

ILU takes full advantage of Java’s muitithreading capabilities
and works in multithreaded applications written in other
languages, even if such threading is provided by the operating

syvstem rather than the languace itself. This makes it well
system ratner (nan e ianguage iséil. 1ms makes i

suited for real-time, asynchronous message passing
architectures, such as C2-style architectures. Minimal
modification was required when converting a single-process
C2 application to a multi-process C2 application. ILU allows
objects to be registered and deregistered at rurn-time, therefore
enabling dynamic application construction at run-time. We
utilized this feature to demonstrate a set of components and

connectors joining a larger, already executing .1pplication at
run-time.

5.5 Simultaneous Use of Multiple Middleware Technolo-
gies

Each middleware technology we evaluated has unique
benefits. By combining multiple such technologies in a single
application, the application can potentiaily obiain the benefiis
of all of them. For instance, a middleware technology that
supports multiple platforms but only a single language, such as
RMI, could be combmed with one that supports multiple
languages but a single platform, such as Q, to create an
application that supports both multiple languages and multiple
platforms. .

The advantages of combining multiple middleware
technologies within software connectors are manifold. In the
absence of a singie panacea sofution that supporis ail required
platforms, languages, and network protocols, the ability to
leverage the capabilities of several different middleware
technologies significantly widens the range of applications that
can be implemented within an architectural style such as C2.

We combined our implementations of ILU-C2 and RMI-C2
connectors in a version of the KLAX application. We were
able to do so with no modification to the C2 framework or the
connectors themselves by combining the lateral welding

technique shown in Fig. 7(a) with the horizontal slicing
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Fig. 8. An example of a three-process C2 application using different
OTS middleware types. A single virtual connector is implemented
with two in-process and two multi-process connectors. The in-
process connectors facilitate message passing between the multi-
process connectors. Shaded ovals represent process boundaries.

technique shown in Fig. 7(b). An example of this combined
binding method is shown in Fig. 8. The approach shown in this
figure creates a three-process “virtual connector” using two in-
process C2 connectors to laterally bind two multi-process
connectors. This approach works for any combination of OTS
connectors that use the lateral welding technique. An
alternative approach would have been to create a single
connector that supported both ILU and RMI, but this would
have required changes to the framework. Using the technique
shown Fig. 8 avoids this difficulty with a slight efficiency cost
due to the addition of in-process connectors to bind the multi-
process connectors.

6 DISCUSSION

Because software connectors provide a uniform interface to
other connectors and components within an architecture,
architects need not be concerned with the properties of
different middleware technologies as long as the technology
can be encapsulated within a software connector. Internally,
however, connectors based on different middleware
technologies have different abilities. Implementors of a given
architecture can use this knowledge to determine which
middleware solutions are appropriate in a given
implementation of an architecture. In this way, encapsulating
middleware functionality ~within software connectors
maintains the integrity of an architectural style by keeping it
separate from implementation-dependent factors such as how
to bridge process boundaries within a single architecture.

Currently, a major challenge in computing is the integration of
existing legacy systems with new software capabilities.
Another aspect of this problem is retrofitting existing
components’ interfaces to use them in new contexts. By
encapsulating legacy systems and new software in software
component wrappers as described in {11, 12] and binding these
components together with middleware-integrated software
connectors, building new software systems with legacy
packages becomes less difficult. Consider the case where a
legacy server must be integrated with new client software. If
the server and client packages are both encapsulated within
software components, middleware-enabled connectors such as
those described above can be used to bridge language,
platform, and network boundaries. The middleware
transparently performs platform- and language-independent

11

data transfer across the network, allowing the old and new
components to communicate in a manner that is defined by the
architecture rather than the implementation.

Software connectors have been embraced as a critical
abstraction by software architecture researchers. Connectors
remove from components the responsibility of knowing how
they are interconnected. They also introduce a layer of
indirection between components. The potential penalties paid
due to this indirection (e.g., performance) should be
outweighed by other benefits of connectors, such as their
encapsulation of complex intercommunication protocols that
can be reused relatively inexpensively across applications.
Modeling and implementation of software connectors with
potentially complex protocols thus becomes an important
aspect of architecture-based development.

QOur research to date has identified advantages and
shortcomings in several middleware packages when used in a
real-time component- and-message-based architectural style.
Using techniques such as those described here, we speculate
that such middleware could be integrated with other
architectural styles.

7 FUTURE WORK

In the process of integrating four different OTS middleware
technologies with the C2 implementation infrastructure, we
developed several techniques for using middleware that show
potential for general applicability. In our ongoing project we
plan to widen our base of integrated middleware technologies
to include technologies such as CORBA and DCOM 522].
Based on our experience, we believe that integrating other
middleware will proceed similarly to that described here. We
intend to further refine our existing connectors to improve
performance and capabilities. We also intend to analyze the
efficiency implications of using OTS middleware. Lastly, our
work suggests that the techniques we have developed can be
used to integrate OTS middleware within other architectural
styles that have explicit notions of connectors. We intend to
explore this idea.
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