
 1

An Approach for Tracing and Understanding Asynchronous Architectures

Scott A. Hendrickson, Eric M. Dashofy, and Richard N. Taylor

Institute for Software Research, University of California, Irvine

Irvine, CA 92697-3425

+1 949 824 4101

{shendric, edashofy, taylor}@ics.uci.edu

Abstract

Applications built in a strongly decoupled, event-

based interaction style have many commendable charac-
teristics, including ease of dynamic configuration, ac-

commodation of platform heterogeneity, and ease of dis-

tribution over a network. It is not always easy to humanly
grasp the dynamic behavior of such applications, since

many threads are active and events are asynchronously
(and profusely) transmitted. We present a set of require-

ments for an aid to assist in the human understanding and

exploration of the behavior of such applications through
the incremental refinement of rules for determining cau-

sality relationships between messages sent among com-

ponents. A prototype tool is presented, indicating one
viable approach to meeting these requirements. Experi-

ence with the tool reinforces some of the requirements

and indicates others.

1. Introduction

In event-based architectural styles, components

communicate with each other via explicit software con-

nectors using events, or messages. Each component runs

in its own memory space with its own thread(s) of con-

trol. Events are discrete data objects that are not allowed

to contain direct pointers to data in memory or control

entities like thread objects. Because there is no assump-

tion of a global clock or ordering of execution among

components, event-based systems are asynchronous—a

component may send an event at any time, and may re-

ceive an event at any time.

Understanding an event-based application without

support tools and methods is difficult due to the large

quantity of events flowing through an architecture, the

complex, asynchronous interactions among components,

and the lack of mechanisms within applications for under-

standing causal relationships between events. These inter-

actions are so different from those of a tightly-coupled,

synchronous system (e.g., most object-oriented systems)

tools that work well on them, such as traditional program

debuggers, usually work poorly on event-based applica-

tions. Debugging synchronous applications is done by

examining program flow and variable values. However, at

the architectural level it is the interaction that occurs be-
tween components in the form of events and messages

that is of interest.

Black-box components, for which source code or

specifications may be unavailable, present an additional

difficulty. Thus, techniques are required that can deter-

mine causality relationships of messages and events that

involve both black- and white-box components.

1.1. Objectives

This context suggests a set of broad challenges for

tool support for aiding understanding of the behavior of

an event-based system.

How can an event-based architecture be instrumented

so events can be gathered for viewing and analysis?

How can causal relationships between messages in an

event-based architecture be determined?

How can a user explore and refine the basis for causal

relationships efficiently?

How can messages be organized and visualized to cul-

tivate an understanding of the system?

Experience with building and evolving event-based

systems led us to refine these general objectives to the

following goals:

Message Capture:

Message capture should be the primary source of data

about the system. Approaches must be able to deal with

components without available source code or complete

formal behavioral specification.

Event acquisition should minimally disturb application

characteristics. Some effect on performance is ex-

pected, but semantic changes should be avoided.

Message Relationships and Causality:

Causal relationships among messages must be deter-

mined without access to component source code to re-

main applicable to black-box components.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

 2

Determination of causality relationships need not al-

ways be accurate, but any inaccuracies in identified

causality should be accompanied by methods for a hu-

man to identify and weed out inaccurate results.

Any specifications needed to identify causality (above

and beyond topological architecture descriptions and

system traces) should be usable and applicable to com-

plex, off-the-shelf components.

Tools should allow users to incrementally explore and

refine the basis for determining causality relationships

without the repeating previous steps in the process.

Determination of causality should function even when

component specifications are partial or in-progress.

Presentation:

Though the analysis is grounded in data from the im-

plementation, results should be correlated and pre-

sented to the analyst in terms of events between com-

ponents (i.e. at the architectural level).

Visualization tools and/or techniques should present

the data in a way that does not overwhelm a user.

Tools that provide multiple views of data, and multiple

methods of filtering those views, are preferable.

Visualization tools should support a user’s exploration

and refinement of causality relationships by reflecting

said changes immediately during exploration.

Approaches that work in environments with distrib-

uted or dynamic event-based systems are preferred. Addi-

tional goals we have identified but not fully explored fo-

cus on the use of tracing and causality for objectives be-

yond simple program understanding. We believe that

good approaches can help support test case generation,

system debugging at the architecture level, and possibly

formal or semi-formal analysis.

2. Background

Architecture-based specification and analysis tools

that deal with event-based systems such as Rapide [1] and

CEP [2] are based on complete behavioral specifications

of components. Furthermore, Rapide is designed for pro-

totyping software architectures, and CEP does not specifi-

cally take into account architectural topology. Our ap-

proach applies to implemented, running systems, is archi-

tecture based, and does not require complete component

specifications.

Many state-based analysis tools check whether a sys-

tem meets its specification, usually expressed in state-

charts or a similar formalism such as LTSA [3]. Many of

these approaches focus on verification or analysis of early

system artifacts rather than addressing a running system,

e.g. [4]. In general, state-based analysis techniques suffer

from state-explosion problems and are applicable only to

small systems, even with significant effort to reduce the

state space, as in Nitpick [5]. Our method of determining

causality, in contrast to many state-based approaches, is

far simpler than state machines, is not limited to simula-

tions, and need not be complete.

The distributed and parallel computing communities

have addressed issues of event causality in concurrent,

distributed programs [6]. In these communities, causality

is primarily used to establish a global system snapshot,

which is important for certain kinds of analysis. Our ap-

proach is focused on program understanding, so global

system snapshots are not relevant. Results from these do-

mains concur that, in the general case, exact causality is

difficult to determine. Determining potential causality, as

our approach does, is feasible.

Monitoring and logging tools examine component in-

teractions for large, commercially distributed applications

facilitated by message-oriented middleware [7]. These

tools typically diagnose and manage network problems

and performance. For program understanding and debug-

ging, these tools tend to be too low level and lack tech-

niques to identify the interesting messages from the unin-

teresting ones [8]. Furthermore, these tools do not address

message causality, or allow the tracing of a sequence of

messages through the distributed system.

Finally, tracing-based approaches have been used for

debugging [9-11]. These approaches combine message

tracing with traditional functions of a debugger. Most

approaches augment traditional program debuggers,

which require components’ source code [10]. Our ap-

proach works with black-box components and allows a

user to examine event traces that occurred at any time

during a system, instead of interactively stepping through

a system execution.

3. Approach

We developed an approach that meets the basic goals

above and evaluated its feasibility through creation and

application of prototype tools on representative event-

based applications. Our approach uses a message trace to

understand the communication among components in an

architecture, rules to identify causality relationships be-

Pass through interface

Pass through interface

A copy of each message is
sent to a database through
this third interface

Trace

Connector

Message is
copied

Figure 1. Structure and behavior of a trace
connector.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

 3

tween those messages, and a visualization tool to examine

the chains of causality within a system.

Messages are captured by modifying the architectural

description of a system rather than modifying components

or using the underlying framework. This approach works

with real, implemented systems that may contain black-

box components.

Causal relationships between messages are deter-

mined using heuristic rules specified for each component.

Heuristic rules may identify false causality relationships

in addition to true ones, however, they are simpler to

specify and can be applied to components where only

partial behavioral specification is known.

A visualization tool allows the user to examine mes-

sage causality chains of a running system using the speci-

fied rules as guides. During analysis, rules can be incre-

mentally refined to better capture causality relationships

and the changes will immediately be reflected in the tool.

3.1. Gathering architecture events

We collect message traces by automatically instru-

menting an architecture with trace connectors. Trace con-

nectors (see Figure 1) intercept all messages passing

through them, make a copy of each message, and send

this copy to a distinguished component that logs each

message to a relational database. The original messages

are passed on unmodified. Trace connectors are first-class

entities, and are not part of any component in the architec-

ture.

Our approach works in both single-process and dis-

tributed systems. In distributed systems, connectors bridg-

ing process boundaries are broken into two halves—one

in each process. In terms of instrumentation, distributed

connectors are treated the same way single-process con-

nectors are; a trace connector is placed on every link in

every process. When tracing message causality, distrib-

uted systems are viewed as unbroken architectures. Mes-

sages crossing multi-process connectors appear just as if

they had crossed an in-process connector.

3.2. Determining causal relationships

In our approach, when a component or connector re-

ceives a message (or set of messages) and emits another

message (or set of messages) in response, we say that the

emitted messages are caused by the received messages.

Without component source code, it is not possible to mod-

ify the component itself to tag each emitted message with

a list of caused-by messages. An alternative would be to

use complete formal models; though these can be imprac-

tical or impossible to create, especially for black-box

components.

Instead, we have developed a simpler model of com-

ponent behavior that indicates probable causes and effects

of messages sent to/emitted by components with a high

degree of certainty. We express causal message relation-

ships using a simple language of message classifiers and

rules.

Info Pane:

Information about the
highlighted message in the List
Pane is displayed here.

List Pane:

The causal relationship for the highlighted message is
displayed above this pane in the Detail Pane. Information
about this message is displayed to the left in the Info
Pane. It was a request to decrement the number of lives.

Figure 2. MTAT (Message Trace Analysis Tool) screenshot.

Control Pane:

We have chosen to only view
messages in the List Pane that went
through the top or bottom interfaces
of the StatusComponent component.

Detail Pane:

The causes and effects of the selected message are displayed
on the top and bottom respectively. A request to decrement the
number of player lives from Bus2 produced a notification of the
new number of lives from the StatusComponent component.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

 4

3.2.1. Message Classifiers. Messages are classified by

specifying message characteristics. A message is of-a

particular type if it fits those characteristics. For example,

a message classifier might be described informally as

“any message with the name ‘A’”.

For our prototype tools, we assume that messages

consist of a character string name and a set of name-value

pair properties. Property names are character strings, and

property values are arbitrary objects. We chose this for-

mat because it is general enough to be representative of

many event-based applications, including those that were

the target of our evaluation. However, other message for-

mats and classifiers are feasible.

3.2.2. Rules. Rules describe, at varying levels of abstrac-

tion, how a component reacts to messages. They are typi-

cally specified by the software architect or component

developer. Rules are not complete specifications of a

component’s behavior. Rules can be determined by view-

ing a component’s source code (if available), by examin-

ing its documentation, or by knowledge of how the com-

ponent responds to messages.

Rules are heuristic, meaning that they may occasion-

ally indicate false causality relationships. In our experi-

ence, these inaccuracies had minimal practical impact,

especially as rule accuracy is incrementally increased to

exclude false relationships. Further analysis may indicate

that this is true in the general case.

Each rule defines a set of causes and a set of effects.

Causes and effects are specified as sets of message classi-

fiers, the number of required occurrences for each mes-

sage classifier, and the interface on which a message

would be received or emitted.

3.2.3. Rule Types. There are different types of rules; the

rule type indicates how the set of causes and effects are

related. We have defined two rule types: MatchingN and

MostRecent.
MatchingN rules indicate that a component will al-

ways send the complete set of effect messages when it

receives a complete set of cause messages.

MostRecent, rules indicate that a component will re-

spond to a set of events immediately or will not respond

at all. This rule will associate the most recent complete set

of cause messages with a complete set of effect messages.

While we believe that MatchingN and MostRecent
rules capture many, if not most, of the types of causal

relationships that occur in event-based systems, we intend

to create additional rule types in the future. When deter-

mining causality, rules are translated into database queries

that return possible causes and effects of a given message.

Therefore, new rule types that can be translated to data-

base queries are preferred.

3.3. Visualizing application events

MTAT (Message Trace Analysis Tool), a graphical

tool that we have developed (see Figure 2), allows the

user to interact with the message log and explore message

causality chains, using the specified rules as guides. The

database synchronizes the acquisition of messages from a

running system with searches for causes among them,

allowing the approach to be used interactively on a run-

ning system. MTAT also allows the rules to be changed

while it runs, so rule changes are immediately reflected in

its results.

MTAT allows a user to view the message log in its

entirety, or to limit the display to messages of a particular

component/interface combination. Users can also apply

custom filters that exclude messages outside a given time

frame. Detailed information for each message or compo-

nent is displayed in the info pane when the message or

component is selected in the GUI.

When a user selects a message in the list pane, the

detail pane displays two lists of messages: the selected

message’s possible causes and its possible effects. Dou-

ble-clicking a possible cause or effect changes the se-

lected message, updating the detail pane to show the

newly selected message’s lists of causes and effects. In

this way, a user may “walk through” a causality chain.

Due to the heuristic nature of the approach, and pos-

sibly inaccurate rules, inaccurate results may be dis-

played. These will include false causes and effects, ex-

clude true causes and effects, or both. It is always possible

to determine whether the results are accurate by examin-

ing the unfiltered message log since it is complete. If an

event did not occur and it should have, then this may indi-

cate a bug in the component. If an event did occur, but the

effects and causes are not listed, then there is likely a de-

fect in the rule specification. It is best to have rules that

err on the side of including a false positive rather than

rules that are too restrictive and may exclude a message

that is the actual cause or effect. It is easier to find the true

cause from a small list of potential causes than it is to find

the true cause from the whole message log. Without an

appropriate rule or a rule that is too restrictive, a causal

relationship will not be presented.

4. Experience with the prototype

To evaluate our approach, we annotated components

of two applications with rules and proceeded to examine

the resulting message logs using MTAT.

The first application, KLAX is an interactive computer

game that is highly asynchronous and interacts with the

user in real-time. The configuration we examined is a

single-process application with 16 components. We de-

cided to trace KLAX because of its manageable size, and

because we had no previous knowledge about the behav-

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

 5

ior of the game’s components. We used our instrumenta-

tion tool to instrument the KLAX architecture and gathered

approximately 40,000 messages from a single game of

KLAX. Performance impact was not noticeable because

the game speed is regulated by messages emitted by a

clock component, thus the application has a significant

amount of idle time when messages may be logged. We

were able to trace causal chains of messages throughout

the KLAX architecture using the MTAT tool, verifying our

basic hypothesis and applicability of our rule language

and tools.

The second application, the AWACS Simulator, is a

distributed simulation of the software systems used on the

US Air Force AWACS aircraft. It consists of 126 compo-

nents and 206 connectors. We chose this system because

its size is typical of large, “real-world” systems, it has an

event-based architecture, and it is distributed across proc-

esses. When working with the AWACS message trace, we

found that MTAT’s performance when analyzing causal

relationships was roughly equivalent to that found when

tracing KLAX. This is because MTAT delegates much of

the computationally intensive work of determining mes-

sage causality to the underlying relational database (Ora-

cle 8i in this case). The AWACS experience indicates the

scalability of our approach to large systems and verifies

that our approach works when applied to distributed soft-

ware systems.

5. Conclusion

The rule set used to specify causal relationships is

simple, intuitive, and usable, but not fully formal, and

applies to systems where component source may not be

available. The incrementality of the approach means there

is a balance between the number of false positives and

how specific the rules are. It is up to the annotator to de-

cide when the results are “good enough.” In evaluation of

we found that the actual number of false-positives was

low and easy to determine when they did occur.

In the long-term, we believe that message tracing and

causality relationships have the potential to be valuable in

other parts of the software development process. Already,

we have seen how causality relationships can indicate

bugs or incorrect rule specifications in an architecture,

indicating their usefulness in debugging and possibly re-

quirements specification. We believe that message traces

and rules can also be useful in aspects of testing, such as

test-case generation.

6. Acknowledgements

We would like to thank Adrita Bhor, Nghi Nguyen, and

Santiago Li for their contributions to developing and evaluating

this approach and its associated tools.

Effort sponsored by the Defense Advanced Research Pro-

jects Agency (DARPA) and Air Force Research Laboratory, Air

Force Materiel Command, USAF, under agreement number

F30602-00-2-0599 and the National Science Foundation under

grant number 0205724. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright annotation thereon. The views

and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of the

Defense Advanced Research Projects Agency (DARPA), the Air

Force Laboratory, or the U.S. Government.

7. References

[1] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D.

Bryan, and W. Mann, "Specification and Analysis of System

Architecture Using Rapide," IEEE Transactions on Software

Engineering, vol. 21, pp. 336-355, 1995.

[2] D. C. Luckham, The Power of Events: An Introduction to

Complex Event Processing in Distributed Enterprise Systems:

Addison Wesley Professional, 2002.

[3] S.-C. Cheung and J. Kramer, "Checking subsystem safety

properties in compositional reachability analysis," presented at

18th International Conference on Software Engineering, Berlin

Germany, 1996.

[4] J. M. Atlee and J. D. Gannon, "State-Based Model Checking

of Event-Driven System Requirements," IEEE Transactions on

Software Engineering, vol. 19, pp. 24-40, 1993.

[5] D. Jackson and C. A. Damon, "Elements of Style: Analyzing

a Software Design Feature with a Counterexample Detector,"

IEEE Transactions on Software Engineering, vol. 22, pp. 484-

495, 1996.

[6] R. Schwarz and F. Mattern, "Detecting Causal Relationships

in Distributed Computations: In Search of the Holy Grail," Dis-

tributed Computing, vol. 7, pp. 149-174, 1994.

[7] Software Engineering Institute, "Message-Oriented Middle-

ware: Software Technology Review," vol. 2003: Software Engi-

neering Institute, 2003.

[8] D. C. Luckham and B. Frasca, "Complex Event Processing

in Distributed Systems," Stanford University, Stanford, Com-

puter Systems Laboratory Technical CSL-TR-98-754, March

1998.

[9] A. P. Cláudio, M. B. Carmo, and J. D. Cunha, "Monitoring

and Debugging Message Passing Applications with MPVisual-

izer," presented at 8th Euromicro Workshop on Parallel and

Distributed Processing, Rhodes, Greece, 2000.

[10] M. Frumkin, R. Hood, and L. Lopez, "Trace-driven debug-

ging of message passing programs," presented at First Merged

International Symposium on Parallel and Distributed Processing,

Orlando, FL, 1998.

[11] R. Lencevicius, A. Ran, and R. Yairi, "Third eye — speci-

fication-based analysis of software execution traces," presented

at 22nd international conference on Software engineering, Lim-

erick, Ireland, 2000.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

