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Abstract

Applications built in a strongly decoupled, event-

based interaction style have many commendable charac-
teristics, including ease of dynamic configuration, ac-

commodation of platform heterogeneity, and ease of dis-

tribution over a network. It is not always easy to humanly 
grasp the dynamic behavior of such applications, since 

many threads are active and events are asynchronously 
(and profusely) transmitted. We present a set of require-

ments for an aid to assist in the human understanding and 

exploration of the behavior of such applications through 
the incremental refinement of rules for determining cau-

sality relationships between messages sent among com-

ponents. A prototype tool is presented, indicating one 
viable approach to meeting these requirements. Experi-

ence with the tool reinforces some of the requirements 

and indicates others. 

1. Introduction 

In event-based architectural styles, components 

communicate with each other via explicit software con-

nectors using events, or messages. Each component runs 

in its own memory space with its own thread(s) of con-

trol. Events are discrete data objects that are not allowed 

to contain direct pointers to data in memory or control 

entities like thread objects. Because there is no assump-

tion of a global clock or ordering of execution among 

components, event-based systems are asynchronous—a 

component may send an event at any time, and may re-

ceive an event at any time. 

Understanding an event-based application without 

support tools and methods is difficult due to the large 

quantity of events flowing through an architecture, the 

complex, asynchronous interactions among components, 

and the lack of mechanisms within applications for under-

standing causal relationships between events. These inter-

actions are so different from those of a tightly-coupled, 

synchronous system (e.g., most object-oriented systems) 

tools that work well on them, such as traditional program 

debuggers, usually work poorly on event-based applica-

tions. Debugging synchronous applications is done by 

examining program flow and variable values. However, at 

the architectural level it is the interaction that occurs be-
tween components in the form of events and messages 

that is of interest. 

Black-box components, for which source code or 

specifications may be unavailable, present an additional 

difficulty. Thus, techniques are required that can deter-

mine causality relationships of messages and events that 

involve both black- and white-box components. 

1.1. Objectives 

This context suggests a set of broad challenges for 

tool support for aiding understanding of the behavior of 

an event-based system. 

How can an event-based architecture be instrumented 

so events can be gathered for viewing and analysis? 

How can causal relationships between messages in an 

event-based architecture be determined? 

How can a user explore and refine the basis for causal 

relationships efficiently? 

How can messages be organized and visualized to cul-

tivate an understanding of the system? 

Experience with building and evolving event-based 

systems led us to refine these general objectives to the 

following goals: 

Message Capture:  

Message capture should be the primary source of data 

about the system. Approaches must be able to deal with 

components without available source code or complete 

formal behavioral specification. 

Event acquisition should minimally disturb application 

characteristics. Some effect on performance is ex-

pected, but semantic changes should be avoided. 

Message Relationships and Causality: 

Causal relationships among messages must be deter-

mined without access to component source code to re-

main applicable to black-box components. 
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Determination of causality relationships need not al-

ways be accurate, but any inaccuracies in identified 

causality should be accompanied by methods for a hu-

man to identify and weed out inaccurate results. 

Any specifications needed to identify causality (above 

and beyond topological architecture descriptions and 

system traces) should be usable and applicable to com-

plex, off-the-shelf components. 

Tools should allow users to incrementally explore and 

refine the basis for determining causality relationships 

without the repeating previous steps in the process. 

Determination of causality should function even when 

component specifications are partial or in-progress. 

Presentation: 

Though the analysis is grounded in data from the im-

plementation, results should be correlated and pre-

sented to the analyst in terms of events between com-

ponents (i.e. at the architectural level). 

Visualization tools and/or techniques should present 

the data in a way that does not overwhelm a user. 

Tools that provide multiple views of data, and multiple 

methods of filtering those views, are preferable. 

Visualization tools should support a user’s exploration 

and refinement of causality relationships by reflecting 

said changes immediately during exploration. 

Approaches that work in environments with distrib-

uted or dynamic event-based systems are preferred. Addi-

tional goals we have identified but not fully explored fo-

cus on the use of tracing and causality for objectives be-

yond simple program understanding. We believe that 

good approaches can help support test case generation, 

system debugging at the architecture level, and possibly 

formal or semi-formal analysis. 

2. Background 

Architecture-based specification and analysis tools 

that deal with event-based systems such as Rapide [1] and 

CEP [2] are based on complete behavioral specifications 

of components. Furthermore, Rapide is designed for pro-

totyping software architectures, and CEP does not specifi-

cally take into account architectural topology. Our ap-

proach applies to implemented, running systems, is archi-

tecture based, and does not require complete component 

specifications.

Many state-based analysis tools check whether a sys-

tem meets its specification, usually expressed in state-

charts or a similar formalism such as LTSA [3]. Many of 

these approaches focus on verification or analysis of early 

system artifacts rather than addressing a running system, 

e.g. [4]. In general, state-based analysis techniques suffer 

from state-explosion problems and are applicable only to 

small systems, even with significant effort to reduce the 

state space, as in Nitpick [5]. Our method of determining 

causality, in contrast to many state-based approaches, is 

far simpler than state machines, is not limited to simula-

tions, and need not be complete. 

The distributed and parallel computing communities 

have addressed issues of event causality in concurrent, 

distributed programs [6]. In these communities, causality 

is primarily used to establish a global system snapshot, 

which is important for certain kinds of analysis. Our ap-

proach is focused on program understanding, so global 

system snapshots are not relevant. Results from these do-

mains concur that, in the general case, exact causality is 

difficult to determine. Determining potential causality, as 

our approach does, is feasible. 

Monitoring and logging tools examine component in-

teractions for large, commercially distributed applications 

facilitated by message-oriented middleware [7]. These 

tools typically diagnose and manage network problems 

and performance. For program understanding and debug-

ging, these tools tend to be too low level and lack tech-

niques to identify the interesting messages from the unin-

teresting ones [8]. Furthermore, these tools do not address 

message causality, or allow the tracing of a sequence of 

messages through the distributed system. 

Finally, tracing-based approaches have been used for 

debugging [9-11]. These approaches combine message 

tracing with traditional functions of a debugger. Most 

approaches augment traditional program debuggers, 

which require components’ source code [10]. Our ap-

proach works with black-box components and allows a 

user to examine event traces that occurred at any time 

during a system, instead of interactively stepping through 

a system execution. 

3. Approach 

We developed an approach that meets the basic goals 

above and evaluated its feasibility through creation and 

application of prototype tools on representative event-

based applications. Our approach uses a message trace to 

understand the communication among components in an 

architecture, rules to identify causality relationships be-

Pass through interface 

Pass through interface 

A copy of each message is 
sent to a database through 
this third interface 

Trace 

Connector

Message is 
copied 

Figure 1. Structure and behavior of a trace 
connector. 
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tween those messages, and a visualization tool to examine 

the chains of causality within a system. 

Messages are captured by modifying the architectural 

description of a system rather than modifying components 

or using the underlying framework. This approach works 

with real, implemented systems that may contain black-

box components. 

Causal relationships between messages are deter-

mined using heuristic rules specified for each component. 

Heuristic rules may identify false causality relationships 

in addition to true ones, however, they are simpler to 

specify and can be applied to components where only 

partial behavioral specification is known. 

A visualization tool allows the user to examine mes-

sage causality chains of a running system using the speci-

fied rules as guides. During analysis, rules can be incre-

mentally refined to better capture causality relationships 

and the changes will immediately be reflected in the tool. 

3.1. Gathering architecture events 

We collect message traces by automatically instru-

menting an architecture with trace connectors. Trace con-

nectors (see Figure 1) intercept all messages passing 

through them, make a copy of each message, and send 

this copy to a distinguished component that logs each 

message to a relational database. The original messages 

are passed on unmodified. Trace connectors are first-class 

entities, and are not part of any component in the architec-

ture. 

Our approach works in both single-process and dis-

tributed systems. In distributed systems, connectors bridg-

ing process boundaries are broken into two halves—one 

in each process. In terms of instrumentation, distributed 

connectors are treated the same way single-process con-

nectors are; a trace connector is placed on every link in 

every process. When tracing message causality, distrib-

uted systems are viewed as unbroken architectures. Mes-

sages crossing multi-process connectors appear just as if 

they had crossed an in-process connector. 

3.2. Determining causal relationships 

In our approach, when a component or connector re-

ceives a message (or set of messages) and emits another 

message (or set of messages) in response, we say that the 

emitted messages are caused by the received messages. 

Without component source code, it is not possible to mod-

ify the component itself to tag each emitted message with 

a list of caused-by messages. An alternative would be to 

use complete formal models; though these can be imprac-

tical or impossible to create, especially for black-box 

components.  

Instead, we have developed a simpler model of com-

ponent behavior that indicates probable causes and effects 

of messages sent to/emitted by components with a high 

degree of certainty. We express causal message relation-

ships using a simple language of message classifiers and

rules.

Info Pane: 

Information about the 
highlighted message in the List 
Pane is displayed here.

List Pane:

The causal relationship for the highlighted message is 
displayed above this pane in the Detail Pane. Information 
about this message is displayed to the left in the Info 
Pane. It was a request to decrement the number of lives.

Figure 2. MTAT (Message Trace Analysis Tool) screenshot. 

Control Pane: 

We have chosen to only view 
messages in the List Pane that went 
through the top or bottom interfaces 
of the StatusComponent component. 

Detail Pane:

The causes and effects of the selected message are displayed 
on the top and bottom respectively. A request to decrement the 
number of player lives from Bus2 produced a notification of the 
new number of lives from the StatusComponent component. 
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3.2.1. Message Classifiers. Messages are classified by 

specifying message characteristics. A message is of-a 

particular type if it fits those characteristics. For example, 

a message classifier might be described informally as 

“any message with the name ‘A’”. 

For our prototype tools, we assume that messages 

consist of a character string name and a set of name-value 

pair properties. Property names are character strings, and 

property values are arbitrary objects. We chose this for-

mat because it is general enough to be representative of 

many event-based applications, including those that were 

the target of our evaluation. However, other message for-

mats and classifiers are feasible. 

3.2.2. Rules. Rules describe, at varying levels of abstrac-

tion, how a component reacts to messages. They are typi-

cally specified by the software architect or component 

developer. Rules are not complete specifications of a 

component’s behavior. Rules can be determined by view-

ing a component’s source code (if available), by examin-

ing its documentation, or by knowledge of how the com-

ponent responds to messages. 

Rules are heuristic, meaning that they may occasion-

ally indicate false causality relationships. In our experi-

ence, these inaccuracies had minimal practical impact, 

especially as rule accuracy is incrementally increased to 

exclude false relationships. Further analysis may indicate 

that this is true in the general case.  

Each rule defines a set of causes and a set of effects.

Causes and effects are specified as sets of message classi-

fiers, the number of required occurrences for each mes-

sage classifier, and the interface on which a message 

would be received or emitted. 

3.2.3. Rule Types. There are different types of rules; the 

rule type indicates how the set of causes and effects are 

related. We have defined two rule types: MatchingN and 

MostRecent.
MatchingN rules indicate that a component will al-

ways send the complete set of effect messages when it 

receives a complete set of cause messages. 

MostRecent, rules indicate that a component will re-

spond to a set of events immediately or will not respond 

at all. This rule will associate the most recent complete set 

of cause messages with a complete set of effect messages. 

While we believe that MatchingN and MostRecent 
rules capture many, if not most, of the types of causal 

relationships that occur in event-based systems, we intend 

to create additional rule types in the future. When deter-

mining causality, rules are translated into database queries 

that return possible causes and effects of a given message. 

Therefore, new rule types that can be translated to data-

base queries are preferred.  

3.3. Visualizing application events 

MTAT (Message Trace Analysis Tool), a graphical 

tool that we have developed (see Figure 2), allows the 

user to interact with the message log and explore message 

causality chains, using the specified rules as guides. The 

database synchronizes the acquisition of messages from a 

running system with searches for causes among them, 

allowing the approach to be used interactively on a run-

ning system. MTAT also allows the rules to be changed 

while it runs, so rule changes are immediately reflected in 

its results.  

MTAT allows a user to view the message log in its 

entirety, or to limit the display to messages of a particular 

component/interface combination. Users can also apply 

custom filters that exclude messages outside a given time 

frame. Detailed information for each message or compo-

nent is displayed in the info pane when the message or 

component is selected in the GUI.  

When a user selects a message in the list pane, the 

detail pane displays two lists of messages: the selected 

message’s possible causes and its possible effects. Dou-

ble-clicking a possible cause or effect changes the se-

lected message, updating the detail pane to show the 

newly selected message’s lists of causes and effects. In 

this way, a user may “walk through” a causality chain. 

Due to the heuristic nature of the approach, and pos-

sibly inaccurate rules, inaccurate results may be dis-

played. These will include false causes and effects, ex-

clude true causes and effects, or both. It is always possible 

to determine whether the results are accurate by examin-

ing the unfiltered message log since it is complete. If an 

event did not occur and it should have, then this may indi-

cate a bug in the component. If an event did occur, but the 

effects and causes are not listed, then there is likely a de-

fect in the rule specification. It is best to have rules that 

err on the side of including a false positive rather than 

rules that are too restrictive and may exclude a message 

that is the actual cause or effect. It is easier to find the true 

cause from a small list of potential causes than it is to find 

the true cause from the whole message log. Without an 

appropriate rule or a rule that is too restrictive, a causal 

relationship will not be presented. 

4. Experience with the prototype 

To evaluate our approach, we annotated components 

of two applications with rules and proceeded to examine 

the resulting message logs using MTAT.  

The first application, KLAX is an interactive computer 

game that is highly asynchronous and interacts with the 

user in real-time. The configuration we examined is a 

single-process application with 16 components. We de-

cided to trace KLAX because of its manageable size, and 

because we had no previous knowledge about the behav-
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ior of the game’s components. We used our instrumenta-

tion tool to instrument the KLAX architecture and gathered 

approximately 40,000 messages from a single game of 

KLAX. Performance impact was not noticeable because 

the game speed is regulated by messages emitted by a 

clock component, thus the application has a significant 

amount of idle time when messages may be logged. We 

were able to trace causal chains of messages throughout 

the KLAX architecture using the MTAT tool, verifying our 

basic hypothesis and applicability of our rule language 

and tools. 

The second application, the AWACS Simulator, is a 

distributed simulation of the software systems used on the 

US Air Force AWACS aircraft. It consists of 126 compo-

nents and 206 connectors. We chose this system because 

its size is typical of large, “real-world” systems, it has an 

event-based architecture, and it is distributed across proc-

esses. When working with the AWACS message trace, we 

found that MTAT’s performance when analyzing causal 

relationships was roughly equivalent to that found when 

tracing KLAX. This is because MTAT delegates much of 

the computationally intensive work of determining mes-

sage causality to the underlying relational database (Ora-

cle 8i in this case). The AWACS experience indicates the 

scalability of our approach to large systems and verifies 

that our approach works when applied to distributed soft-

ware systems. 

5. Conclusion 

The rule set used to specify causal relationships is 

simple, intuitive, and usable, but not fully formal, and 

applies to systems where component source may not be 

available. The incrementality of the approach means there 

is a balance between the number of false positives and 

how specific the rules are. It is up to the annotator to de-

cide when the results are “good enough.” In evaluation of 

we found that the actual number of false-positives was 

low and easy to determine when they did occur.  

In the long-term, we believe that message tracing and 

causality relationships have the potential to be valuable in 

other parts of the software development process. Already, 

we have seen how causality relationships can indicate 

bugs or incorrect rule specifications in an architecture, 

indicating their usefulness in debugging and possibly re-

quirements specification. We believe that message traces 

and rules can also be useful in aspects of testing, such as 

test-case generation. 
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