
Moving Architectural Description from Under the Technology Lamppost 1

Moving Architectural Description from Under
the Technology Lamppost

 Nenad Medvidovic Eric Dashofy Richard N. Taylor
 Computer Science Department Department of Informatics
 Viterbi School of Engineering School of Information & Computer Sciences
University of Southern California University of California
 Los Angeles, CA 90089 USA Irvine, CA 92697 USA

ABSTRACT
Software architecture description languages (ADLs) were a particularly
active research area in the 1990s. In 2000, we published an extensive
study of existing ADLs, which has served as a useful reference to software
architecture researchers and practitioners. However, the field of software
architecture and our understanding of it have undergone numerous
changes in the past several years. In particular, the Unified Modeling
Language (UML) has gained popularity and wide adoption, and as a
result many of the ADLs we had studied have been pushed into obscurity.
In this paper, we argue that the main reason behind this is that the early
ADLs focused almost exclusively on the technological aspects of
architecture, and mostly ignored the application domain and business
contexts within which software systems, and development organizations,
exist. Together, these three concerns—technology, domain, and
business—constitute the three “lampposts” needed to appropriately
“illuminate” software architecture and architectural description. We use
this new framework to evaluate both the languages from our original
study, as well as several more recent ADLs (including UML 2.0).

1 Introduction
1.1 Background

Software architecture emerged as a field of software engineering research
in the early 1990s, after the publication of Perry and Wolf’s seminal paper
[33]. Quickly thereafter a number of architecture-based software
development notations, methods, techniques, and tools were formulated.
Of particular interest to the early software architecture researchers and (to
a somewhat lesser extent) practitioners were the notations for modeling
software architectures. These came to be known as architecture
description languages, or ADLs.

Moving Architectural Description from Under the Technology Lamppost 2

Several ADLs appeared in the software engineering literature in relatively
short succession: Acme [15], C2 [39], Darwin [25], MetaH [4], Rapide
[24], UniCon [37], Weaves [16], Wright [1], and so on. Several other,
already existing notations were also claimed to be ADLs, either by their
developers or users: module interconnection languages (MILs) [34],
StateCharts [17], CHAM [19], LILEAnna [41], UML 1.x [7], and so on.
The early understanding of this subject was so immature that it was very
difficult to argue for or against considering a given software modeling
notation to be an ADL; languages often “became” ADLs simply because
someone referred to them as such. However, one thing common across all
these notations was the implication that they would significantly alter and
improve the way software is produced.

Our study, which was conducted in the late 1990s and published in early
2000 [27], provided some much needed answers. It provided a technical
basis for determining what an ADL is and is not. In particular, this
allowed us to formulate a clear argument against the inclusion of several
commonly used notations into the ADLs category. Our conclusions
regarding some of these “non-ADLs”, such as StateCharts or CHAM,
largely agreed with the conventional wisdom of the time, while in the case
of others, such as UML 1.x, they were surprising (even though subsequent
developments—the architecture modeling constructs added to UML 2.x—
proved our conclusions sound).

These early “first-generation” ADLs came from different sources:
commercial industry, government-funded aerospace companies, standards
bodies, and academia. They emerged from very different areas of
software development. For example, MetaH was targeted primarily at
real-time systems (with a view toward the control systems domain), while
Weaves modeled asynchronous data-flow architectures (geared to the
needs of weather satellite-based systems). The early ADLs also emerged
from different areas of computer science, outside software engineering.
For example, Rapide’s predecessors were used for hardware architecture
modeling, while Darwin grew out of a distributed computing research
project.

Yet, despite these differences, the first-generation ADLs all shared certain
traits. They all modeled the structural and, with the exception of Acme,
functional characteristics of software systems. They invariably took a
single, limited perspective on software architecture. Some, such as
Rapide, focused almost exclusively on event-based modeling at the
expense of other system aspects; others, such as Wright, were specifically
geared toward deadlock detection in concurrent architectures; still others,
such as MetaH and UniCon, were mainly concerned with process
scheduling. To support such objectives the early ADLs heavily focused

Moving Architectural Description from Under the Technology Lamppost 3

on formalization of software architectural models, with an eye on their
analysis.

The result of this narrow focus was a set of ADLs that were deficient in
various areas that were critical to many stakeholders. Most of these ADLs
focused exclusively on software. For example, only MetaH had explicit
support for modeling software architecture as well as the hardware it runs
on. Few first-generation ADLs were accompanied by a strategy for
implementing the described architecture. Moreover, characteristics of the
architecture description could often be verified using analysis tools and
methods, but there was no way to ensure that the implemented system
conformed to the architecture. Furthermore, these ADLs were not
extensible in any meaningful way—it was prohibitively expensive to add
features to these ADLs to support these unmet needs—severely limiting
their range of applicability.

1.2 The Changing Landscape of Software Architecture
Since our 2000 study, the landscape of software architecture has continued
to evolve. Two major changes are of interest here. First, the notion of
software architecture has been expanded, allowing us to view ADLs in a
new light. Second, notations and approaches for modeling software
architecture have themselves continued to evolve, thereby providing us
with information about directions in which the architecture modeling
community is heading.

 A Broader Notion of Software Architecture
There is not today, nor has there ever been, a clear consensus on a
definition of software architecture. Yet defining software architecture is
critical to understanding what constitutes an architecture description
language. Literally hundreds of definitions have been proffered; many
have been cataloged by the Software Engineering Institute (SEI) and are
available on the Web [10]. Our initial study struggled with this problem as
well, identifying several alternative notions of what constituted
architecture and what made up an ADL. Based on a broad survey of
architecture description notations and approaches, we identified that ADLs
capture aspects of software design centered around a system’s
components, connectors, and configuration. This framework is concordant
with what is supported in most first-generation ADLs, which, as we noted
above, primarily tend to capture architectural structure along with
properties of that structure. It was this framework that provided us with a
“litmus test” as to whether a modeling notation was or was not an ADL.

Since that time, however, other concerns have become increasingly
prominent in the software engineering community, specifically those
derived from domain-specific and business needs. Additional insight has
come from notions of architecture beyond the software engineering

Moving Architectural Description from Under the Technology Lamppost 4

community—systems engineers, for example, have a broad notion of what
constitutes architecture. Conferences such as the Working IEEE/IFIP
Conference on Software Architecture (WICSA) have brought together
researchers and practitioners from the software architecture, systems
engineering, and enterprise architecture communities. All this has revealed
that, while structural concerns retain a place of primacy in software
architecture modeling, they do not and should not define its scope. Instead,
we propose a broader definition of software architecture:

Definition: A software system’s architecture is the set of principal
design decisions about the system.

Design decisions encompass every aspect of the system under
development, including:

• design decisions related to system structure – for example, “there
should be exactly three components in the system, the ‘data store,’
the ‘business logic,’ and the ‘user interface’ component;”

• design decisions related to behavior (also referred to as functional)
– for example, “data processing, storage, and visualization will be
handled separately;”

• design decisions related to interaction – for example,
“communication among all system elements will occur only using
event notifications;”

• design decisions related to the system’s non-functional properties
– for example, “the system’s dependability will be ensured by
replicated processing modules;”

• design decisions related to the system’s development itself – for
example, the process that will be used to develop and evolve the
system; and

• design decisions related to the system’s business position – for
example, its relationship to other products, time-to-market, and so
on.

An important term that appears in the above definition is “principal.” It
implies a degree of importance that grants a design decision “architectural
status.” It also implies that not all design decisions are architectural, that
is, they do not necessarily impact a system’s architecture. How one
delimits “principal” will depend on what the system goals are. Ultimately,
the system’s stakeholders (including, but not restricted only to the
architect) will decide which design decisions are important enough to
include in the architecture, and which are not. For example, consider a
design decision such as “the log viewer component will check for new log
entries once every second.” For systems where real-time log viewing is
needed, the log refresh interval might be specified as part of the

Moving Architectural Description from Under the Technology Lamppost 5

architecture. For other systems, this may simply be an implementation
detail and be elided from the description of the system’s architecture.

From this definition of architecture, we can also derive definitions for
architecture models, description languages, and the act of modeling:

Definition. An architecture model is an artifact or document that
captures some or all of the design decisions that make up a
system’s architecture. Architecture models are sometimes referred
to as architecture descriptions.

Definition: An architecture description language is a notation in
which architecture models can be expressed.

Definition. Architecture modeling is the effort to capture and
document the design decisions that make up a system’s
architecture.

This broader perspective changes the test for whether a notation can be
considered an architecture description language. Instead of defining ADLs
based on features (e.g., the ability to model high-level system structure),
they are defined by stakeholder concerns—whether a notation can
adequately capture design decisions deemed principal by the system’s
stakeholders. As we will explain below, these concerns are substantially
broader than those captured by first-generation ADLs.

In some sense, this broader definition may seem like a step backward in
that it is a relaxation of our original litmus test. In this new light, even
some determinations we made in our original study about what is and is
not an ADL may change. However, this raises the importance of
discussing the adequacy of different notations for modeling software
architecture. For example, under our new definition a notation that is not
suitable for high-level structural modeling may now be classified as an
ADL, but one that is clearly deficient in a critical respect.

This induces a new way to evaluate architecture modeling notations: not
based on how they model basic structural elements like components,
connectors, and interfaces, but rather how adequately they model concerns
important to their target stakeholders.

Our criticisms of the early ADLs, and, to a somewhat lesser extent UML,
stem from this issue. Those notations focused primarily on general
concerns related to the technical aspects of designing and constructing
software systems. However, we argue that additional concerns must be
illuminated: those from application domains, as well as business needs.
We posit that these three “lampposts” (technology, domain, and business),

Moving Architectural Description from Under the Technology Lamppost 6

can help explain the reasons behind the limited impact of the first-
generation ADLs and the shortcomings of UML. In fact, they provide a
means for a more complete treatment of ADLs than was given in our
original study [27]. We also posit that several more recent, “second-
generation” ADLs, including UML 2.0, can be better understood and put
in their proper context with the help of the three lampposts.

This paper, therefore, provides a different perspective of ADLs, both first-
and second-generation, with an improved understanding of a system’s
development context and an ADL’s role in it. In order to properly
understand, and assess, an architecture modeling language, we believe that
one needs to understand a number of issues that go beyond the usual
system structure and behavioral concerns: the many overlapping and
sometimes conflicting non-functional properties; the characteristics and
needs of the application domain(s) at which the ADL is targeted; the
system stakeholders; the organization’s business goals (e.g., managing
architectural assets to support product families); and so on. Capturing all
such concerns with a single, narrowly focused notation (e.g., a first-
generation ADL) is impossible. At the same time, as we will discuss, it is
also impractical to try to do so with a “universal” notation, such as UML.

In light of this, we will argue in this paper that a truly effective ADL must
strike a proper balance between a strict focus on recurring technical
concerns and the extensibility needed to include the concerns mandated by
different application domains and business contexts. Our principal
objectives are to highlight and improve the current understanding of

1. the limitations of purely technical approaches to software
architecture, as in the first-generation ADLs;

2. the justified attraction, but also limitations of “one-size-fits-all”
approaches, as embodied in UML; and

3. the need for specialization of a modeling language based on the
demands of a specific application, application family, or
application domain.

Most importantly, returning to our metaphor, we will argue that, in order
to realize their impact, ADLs have to step away from the technology
lamppost and let in some light from the remaining two lampposts. This is
not to say that there exists today an ‘ideal’ or ‘perfect’ ADL; in fact, we
believe no such ADL can emerge because of the diversity of concerns that
can impact systems development. Rather, we argue that ADLs can be
made more effective by taking into account concerns from all three
lampposts, and that several recent ADLs are indeed moving in this
direction.

Moving Architectural Description from Under the Technology Lamppost 7

The remainder of the paper is organized as follows: Section 2 fleshes out
our vision of the three lampposts and how they can (and should) influence
software architecture modeling. Section 3 briefly recaps the lessons taught
by first-generation ADLs. Section 4 describes, in some detail, a set of
“second-generation” architecture description languages that have evolved
from first-generation ADLs and are more appropriately positioned under
the three lampposts. Section 5 summarizes lessons we have learned since
our 2000 study [24], and extrapolates some future directions for
architecture modeling. Section 6 concludes the paper.

2 The Three Lampposts
The old story about the man who lost his keys provides some context for
our perspective on the design of architecture description languages. One
variant of the story states that one night a man dropped his keys in a
parking lot just before getting to his car. A friend saw him searching for
the keys on the ground under a lamppost, but quite some distance away
from the car. When asked why he was looking for the keys so far away
from where he dropped them, the man replied, “Because the light is much
better over here.” This story serves as a cautionary tale to all researchers:
from time to time we fail to discover what is needed simply because we
are looking for a solution merely in places where it is easiest to perform
the research.

The notion of “what is needed” is quite variable of course. For researchers
in an academic computer science program, “what is needed” may simply
be some interesting technical innovation. For an engineer working in a
specific application domain, “what is needed” might be something that
provides exceptional power in that domain, regardless of whether it has
any value in any other situation.

This characterizes how many architecture modeling languages have been
developed: the concerns addressed by modeling languages have tended to
reflect only the characteristics and specific interests of their creators. The
creators of first-generation ADLs were largely software engineering
researchers, and as such these ADLs model concerns that are of particular
interest to various segments of the research community. For example,
determining appropriate scheduling policies, deadlock-freedom, or the
best separation of functionality into components and connectors are the
focus of various first-generation ADLs. These concerns primarily arise
from technological and engineering problems in constructing and
maintaining large software systems, and are illuminated by the
‘technology lamppost.’

We argue that an excessive or exclusive focus on concerns found under
the technology lamppost is a critical failing of early architecture
description languages: they do not provide “what is needed” to satisfy a

Moving Architectural Description from Under the Technology Lamppost 8

robust software engineering ecology. As architecture modeling has
evolved, languages that encompass concerns beyond the technology
lamppost are those that have been the most influential, widely-adopted,
and, arguably, successful. We believe that this is because they address
concerns important to a wider variety of critical stakeholders.

Developing a successful software system means satisfying a wide variety
of stakeholders. Indeed, software engineers whose expertise and interests
lie mostly under the technology lamppost are included. However, unless
the system’s target users are themselves software engineers, the concerns
of the users will fall mostly under another lamppost—the domain
lamppost. These stakeholders are interested mostly in how well the
software models and addresses problems that they are encountering in
their own application domain. Additionally, the production of a software
product typically does not occur in isolation. Products are largely
interrelated—sharing components, providing complementary
functionality, being built by overlapping teams of developers, and filling a
particular space in a market. These concerns fall under a third lamppost—
the business lamppost.

These three lampposts—technology, domain, and business—can provide
several new insights about architecture description languages:

• First, they provide a way to classify and evaluate architecture

description languages, by asking to what extent a given ADL
addresses concerns from each lamppost;

• Second, they provide a possible way to explain the relative success or
failure of past ADLs;

• Third, they provide guidance for developers of new ADLs, as a
reminder to include and balance support for concerns from all three
lampposts.

We thus posit that these three lampposts—technology, domain, and
business—provide the necessary broad perspective on architecture
description languages and their role in supporting product development as
a whole.

Moving Architectural Description from Under the Technology Lamppost 9

Figure 1. The “three
lampposts”: domain of
application, business
concerns, and
technology.

Figure 1 shows these three types of concerns as intersecting areas;
overlapping circles of light from the three lampposts, if you will. The
technology circle is concerned with the specific technical bases for
describing, developing, and reasoning about architectural models. It
includes formalisms, analysis techniques, and supporting tools. The
domain circle is concerned with specific application domain knowledge.
It includes knowledge about the domain’s nature and underlying science,
typical approaches for solving problems in the domain, and standard
elements of solutions to problems within that domain. The business circle
is concerned with markets, organizations, the relationships of different
products to one another, as well as the processes, people, finances, and
organizations that all influence and are influenced by software systems. In
the subsections below we examine each of the circles of light, and discuss
their areas of overlap.

2.1 Technology
The technology lamppost illuminates concerns surrounding the recurring
technical challenges of engineering software systems, and creating the
means for representing and reasoning about their architectures. This
includes the perspectives of classical computer science and software
engineering, including work on the most theoretical side, such as abstract
formal models, as well as work on the very practical, such as linguistic
means for describing architectures. It primarily includes work that is
unfettered with (or uninformed by!) concerns of a particular
implementation domain or business context.

Moving Architectural Description from Under the Technology Lamppost 10

The focus on identifying the critical abstractions, or conceptual
foundations of software architectures, has led, for example, to discussions
about what components, connectors, and interfaces are, and how important
they are in modeling systems. Linguistic concerns have shaped discussions
regarding the relative merits of declarative or imperative ADLs.
Interoperability among different ADLs has been the focus of another line
of work.

Many of the discussions and choices regarding fundamental modeling
techniques have been driven by concerns for the types of analyses that can
be performed on the various models. For instance, the earliest work in
ADLs seems to have been largely shaped by the need to capture the
interfaces of components in such a way that mismatches between
interfaces could be automatically identified. Later work in analysis has
included data flow analysis, analysis for potential deadlocks, performance
estimation, system composition, and others. Often, these ADLs leveraged
pre-existing analyzable formalisms and applied their concepts to software
architectures, since analysis techniques and tools were already available.

Much of the work done in building a conceptual foundation for the
modeling and analysis of software architectures has been accompanied by
work to create a technical infrastructure of tools and environments. Such
infrastructure allows experimentation with the concepts and enables
attempts to apply the results in practical settings. Of particular interest in
this area are ADLs developed with the intent that models can be directly
mapped into implemented systems. Models developed in ADLs such as
SDL [40] and Executable UML [29] can be directly ‘compiled’ into
(partial) implementations, while those expressed in Weaves and C2 can be
mapped to implementations using available architecture frameworks.

Most of the early work in the area of architectural description was
conducted almost exclusively under this lamppost. A representative,
though by no means only, example is the chemical abstract machine
(CHAM) model [19]. This model has proven to be of some theoretical
interest, but there is little evidence that it has any direct practical
application, or that it was shaped by a specific practical need or context.

2.2 Domain
The domain lamppost illuminates concerns driven and informed by the
knowledge of a specific application domain. In a sense, therefore, the
“domain lamppost” is really a host of lampposts, one for each domain that
someone cares to identify. The commonality, however, is in the approach:
choices made for representing and reasoning about systems in a particular
domain are driven by knowledge of that domain, and that knowledge can

Moving Architectural Description from Under the Technology Lamppost 11

be used to shape the representation and reasoning techniques employed in
developing applications.

Modeling languages that address domain-specific concerns offer special
support for solving problems common to a particular target domain. This
distinguishes domain-specific concerns from concerns found under the
technology lamppost—which address general, recurrent problems in
software development independent of any particular domain. Domain
lamppost concerns may also include characteristics of the domain itself.
Because of this, the notations are optimized for creating models in that
particular domain. Put another way, by restricting one’s focus to just one
domain, the smaller set of concerns that one has to worry about enables
specialized, deep solutions to be created. In principle, this approach allows
engineers to ‘speak the language’ of the target system’s users. Compared
to generic approaches, descriptions of applications can be created that are
parsimonious and precise.

Unfortunately, much of the work in specifying and developing domain-
specific applications has not been captured in rigorous notations.
Frequently the domain knowledge is captured only in the minds of the
engineers involved. This renders it difficult to see the exact ways domain
knowledge shaped a particular approach. Moreover, if work in a domain
does not result in something that can be identified as an ADL, then it
becomes difficult to separate domain-focused architecture-based
development from any type of technology that supports development
specifically within that domain.

Several notable successes from first-generation ADLs included a domain-
specific focus. One good example is Weaves [16], which was targeted at
supporting development of satellite ground stations and has been
employed by a number of development organizations. In particular,
Weaves supported the creation of applications which processed, in stages,
continuous telemetry data. Particular knowledge of the domain, and
telemetry streams in particular, exploited in Weaves, included the arrival
rate and type of data received, the independent “connection-less” character
of the data, and the need for dynamic reconfiguration of the data
processing. Another example is MetaH, which was targeted at aircraft and
missile avionics and flight control. Specifically, MetaH supported the
specification and analysis of real-time, fault-tolerant multi-processor
systems. MetaH was applied by a number of organizations beyond its
developers, including Boeing, the US Army, and the SEI, with significant
cost savings realized from at least one effort at the US Army [14].

Moving Architectural Description from Under the Technology Lamppost 12

2.3 Business
The business lamppost illuminates concerns focused on capturing and
exploiting knowledge of the business context of a given development
effort. This includes a product strategy—e.g., how a product will
differentiate itself in its target market, how multiple products are related to
one another, how a product fits into its development organization’s long-
term vision, and so on. It also includes the development organization’s
processes for creating, managing, and evolving its products.

Costs, including financial concerns, also fall under the business lamppost.
It is important to recognize that business concerns do not exist only for
for-profit development organizations or for commercially sold software.
Open-source and free software products also compete in the marketplace,
are developed by organized groups, and are evolved and diversified into
families of related products.

At first glance it may not seem as though the “business lamppost,” with its
context as described above, is related to or sheds any light on architecture
description languages. To illustrate the importance, however, consider the
issue of how an organization retains and exploits its core competencies in
the face of developer turnover. One of an organization’s key assets is
knowledge of how it builds its products, i.e., what enables it to build those
products in a superior manner to its competitors. If such knowledge is
only retained in the heads of key people, then loss of one of those
individuals could severely damage the company’s ability to compete. If,
on the other hand, the knowledge is recorded in a more generally
accessible, manageable, and useful manner, it can be used in training new
personnel and in assisting in the effective production of the company’s
products.

Some of the knowledge so recorded may include description of what
stakeholder perspectives are valued, how input from those stakeholders is
recorded and used, and how various and competing internal perspectives
are used to shape products. Other knowledge may concern the qualities
that the company values in its products, how those qualities are articulated
both internally and externally, and how are they achieved, assessed, and
monitored. Still other aspects include how the company knows what
features or properties of its products are responsible for their sales, and
how it knows which of the products’ features are the critical ones. A final
example concerns how a company values its product assets that are under
development. That is, for products whose development cycle extends over
many months, how is the value of the emerging asset accounted for; what
artifacts are considered in making the valuation; and so on.

As we stated above, business concerns have been largely ignored by the
ADL development community. Software engineering researchers have

Moving Architectural Description from Under the Technology Lamppost 13

addressed business concerns, of course. Examples include the process
modeling notations that emerged in the 1980s and 1990s and cost
modeling frameworks such as COCOMO [5] which, to an extent,
addresses business and technology concerns together. Still, even recent
ADLs address business concerns less than technological or domain
concerns.

Still, there are many business concerns that will likely never find their way
into an ADL, simply because they are too distant from domain and
technology concerns to be of much value in an ADL. For example,
corporate management structures, marketing plans, and organization-wide
financial data will probably never be found in an ADL. However,
concerns such as products’ relationships to each other in product lines and
cost data per component may well appear in an ADL.

2.4 Overlapping Areas: Shedding Light from Multiple Lampposts
It should be apparent from the above descriptions that the three
perspectives described are not mutually exclusive – several ways in which
the concerns overlap are clear. Similarly it is clear that a particular ADL
or related tool or technique may support objectives in more than one
“circle of light.”

Our perspective is that these overlaps, and technologies that support more
than one concern, are important targets for developers and researchers.
ADLs that address concerns from under only one lamppost are unlikely to
be adopted beyond a very small number of enthusiasts. We have already
seen this with, for example first-generation ADLs that addressed only
general concerns from under the technology lamppost, or process
modeling notations that addressed business concerns exclusive of
technology or domain considerations. To be broadly adopted and to be
effective in practice an ADL must satisfy the needs of diverse
stakeholders, among many other factors (ease of use, return on investment,
tool support, and so on). It must fit within a development organization,
broadly construed. Thus an exclusive focus on a single concern (e.g.,
technology) is insufficient; multiple views, domain-specific concerns, and
the business context must all be considered.1

1 As we have pointed out, there are many concerns under these lampposts
that will not be appropriate for representation in an ADL, particularly
concerns that exist far at the periphery and address only one of the
domain, technology, or business concerns. Because of this, we believe that
ADL designers should take all three lampposts into account, but they
should not attempt to cover all possible concerns from all three lampposts.

Moving Architectural Description from Under the Technology Lamppost 14

Figure 2 repeats the diagram of Figure 1, but now with the different areas
labeled. Our intent is to elaborate the meaning of the various areas in the
diagram.

Figure 2. The
overlapping areas of the
“three lampposts”

The Technology area that is exclusive of any overlap with domain
knowledge or business context comprises generic concepts, description
languages, tools, and infrastructure focused on recurring concerns in the
development of software systems. All too frequently, research work in
this area has produced solutions that are difficult to use and which have
not been widely adopted – precisely because of a focus which is narrower
than the full set of stakeholder perspectives necessary.

The Domain area that is exclusive of the other two perspectives comprises
concerns regarding the underlying nature, principles, and science of a
domain, as well as domain characteristics deemed “irrelevant” to either the
business or technology perspectives.

The Business area that is exclusive of the other two concerns are those
facets of business that are independent of the development organization’s
domain of expertise and independent of technology insofar as it relates to

Moving Architectural Description from Under the Technology Lamppost 15

product development. This includes items such as financial accounting
practices, human resources, and so on.

Clearly the intersections are the areas of interest. The intersection of
Domain and Technology, for example, includes technological concerns
that are specific to a particular domain. That is, where the technology-only
area addresses recurring problems that occur while building software
systems in general, the domain-plus-technology area addresses technical
problems that occur while building software systems within a target
domain. Application-family architectures fit within this sub-area, as do
domain-specific modeling languages to capture those family architectures.
The Weaves language mentioned above is an example formalism; other
examples of this ilk include MetaH (where the domain is control systems)
and ADAGE [3] (where the domain is avionics guidance, navigation, and
control).

The intersection of Business and Technology links business concerns such
as costs, product-to-product relationships, and processes to the technical
construction of software systems, independent of any particular domain.
Examples of tools that exist in this space include software project and
process management approaches that relate process steps to specific
software elements, configuration management systems that track the
relationships of various software elements to one another, and
architecture-centric cost modeling notations and tools. Such tools have a
“one-size-fits-all” character to them, since they are domain-independent.

The intersection of Domain and Business includes the core competencies
of an organization: that knowledge of a domain combined with business
strategies and practices which enable the organization to succeed in that
domain. To the extent that such knowledge is not supported by
technology it remains somewhat ephemeral. This area is typified by
classical systems engineering: a focus on modeling the domain, customer
requirements, and processes to develop a solution, while deferring
decisions about specific technological (e.g., implementation) details until
late phases of development.

The “sweet spot” of the diagram is, of course, the region where all three
lampposts overlap. We have labeled that region in Figure 2 “product-line
architectures” as most evocative of what this intersection includes and
enables. Knowledge of an application domain combined with a business
strategy for that domain and supported by technology enables the
representation of and reasoning about a family of applications comprising
a business product line. However, product lines are not the only approach
that fits in this ‘sweet spot;’ any approach that takes into account all three
lampposts will fit there.

Moving Architectural Description from Under the Technology Lamppost 16

These three lampposts help illuminate the various types of research that
have been undertaken in areas related to architecture description
languages. However, the lampposts cast light which is, at best, imprecise
and fuzzy at its boundaries. The discussion below proceeds to consider
how ADLs have evolved, being driven by one or more concerns from
these lampposts. The discussion is specific and more precise, however,
being grounded in the specifics of several languages.

3 First-Generation ADLs
As discussed in the Introduction, in our initial study of ADLs [27] we
considered several classes of notations: “first-generation” ADLs, UML
[7], formal modeling notations – some of which were targeted
specifically at architectural concerns, such as CHAM [19] and LILEAnna
[41], module interconnection languages [34], and even programming
languages. We defined an ADL as a modeling notation that provides
facilities for capturing a software system’s components (i.e.,
computational elements), connectors (i.e., interaction elements), and
configurations (i.e., overall structure). Additionally, we identified specific
dimensions of components, connectors and configurations, as well as
guidelines for evaluating a given notation as a potential ADL.

This definition allowed us to eliminate certain candidate notations
relatively easily, and we eventually reduced the set to about 20 notations.
Of those, ten notations were included in the study as bona fide ADLs, as
shown in Figure 3.

Figure 3. The scope and
applicability of first-
generation ADLs
(adopted from our
original study).

Placed in the context of the three lampposts, most of these ADLs solely
focused on technology: Acme [15], Aesop [30], Darwin [25], Rapide [23],
SADL [35], UniCon [37], and Wright [1]. Aesop’s explicit support for

Moving Architectural Description from Under the Technology Lamppost 17

architectural styles [33] placed it closer than the others to the intersection
of technology and application domain shown in Figure 2 because a style,
such as model-view-controller, may provide a canonical architectural
solution for a given application domain, such as GUI-intensive systems.

In addition to a clear technological focus, three of the studied ADLs
leveraged more extensively properties of an application domain:

• C2’s ADL [26] grew out of an architectural style for graphical user
interface-intensive applications [39], which was eventually
broadened to a larger class of distributed, dynamic systems
characterized by asynchronous event-based interaction.

• MetaH [4] focused on concurrency issues and real-time
computation scheduling as found specifically within control
systems.

• Weaves [16] was created to support large-volume, asynchronous
data-flow architectures as found in satellite ground stations.
Similar to C2, Weaves has shown potential for applicability to
data-intensive systems beyond its original target domain.

Perhaps most strikingly, none of the first-generation ADLs focused on
business concerns. This may very well have been their critical
shortcoming. On the other hand, as will be further elaborated in the next
section, UML has attempted to provide a broad coverage of modeling
issues spanning the area illuminated by both the technology and business
lampposts. This may help to explain its wide adoption in industry.

3.1 The Rise of UML
UML, the Unified Modeling Language, has achieved more mainstream
support than any other notation for modeling software-intensive systems
since the use of flowcharts. As its name implies, UML was derived
through the unification of multiple influential modeling approaches: the
Booch method [6], Rumbaugh’s Object Modeling Technique (OMT) [36],
Jacobson’s Object-Oriented Software Engineering (OOSE) [20] method,
Harel’s statecharts [17], and various other sources.

Whether UML is an ADL, and how suitable it is for that purpose, has been
the subject of study and debate. Under our broader definition of software
architecture given above, it is clear that even the earlier versions of UML
can be used as architecture modeling notations.

UML emerged around the same time as the first-generation ADLs and,
despite its shortcomings when it came to modeling critical architectural
concerns [27, 28], it was rapidly and widely adopted. UML has continued
to evolve. Since 1997 alone, UML has undergone four major revisions:

Moving Architectural Description from Under the Technology Lamppost 18

UML versions 1.0, 1.1, 1.3, and 2.0.2 Furthermore, the “impending”
release of UML 2.0, with at least some of its enhancements targeted at
improved software architecture modeling, was announced and awaited for
several years. Then, very soon after this major revision of the language
appeared, the main UML standards body began preparing another version
(UML 2.1). Unlike the often highly-specialized first-generation ADLs,
UML is a huge and constantly growing composite notation, thirteen
different, loosely connected individual notations (‘diagrams’ in UML
parlance).

However, UML is not a panacea: it has shortcomings that make it less than
ideal for architecture modeling in many respects. For example, UML has
ambiguous semantics—a UML diagram can often be interpreted in
different ways—making it less than ideal for system architectures where
precision is critical (e.g., safety-critical systems). UML has unlimited
extensibility in principle, but with virtually no control over it. For
example, it allows one to introduce separate UML profiles to address
different application domains and modeling needs, but it is also possible to
introduce multiple profiles to address the very same concerns. In either
case, unless the semantics behind those profiles are formalized using
something akin to UML’s Object Constraint Language (OCL) [42]—
which is seldom done in practice, standard UML tools will be completely
agnostic as to the intended meaning behind the profiles [28].

UML 2.0, as a second-generation ADL, will be discussed below.

4 Second-Generation ADLs
The first-generation ADLs predominantly remained under the “technology
lamppost”—addressing interesting technical problems, but largely
ignoring domain or business concerns. The contributions and lessons of
this first generation of ADLs were not lost, however: even though they did
not achieve significant adoption, they inspired a second generation of
ADLs. These “second generation” ADLs tend to inherit lessons from
earlier ADLs, as well as to include more domain and business concerns.
In this section, we will discuss four representatives of this second
generation of architecture description languages: UML 2.0, AADL, Koala,
and xADL 2.0.

2 We became intimately familiar with this issue when we conducted an
early study of UML’s suitability for architectural description: by the time
that work was published [25], we were forced to update our study three
separate times as new UML versions kept appearing.

Moving Architectural Description from Under the Technology Lamppost 19

4.1 UML 2.0
The latest version of UML, UML 2.0 [8], is a syntactically rich language
comprised of 13 different viewpoints, which are called “diagrams” in
UML parlance. Stakeholders play a large part in how UML is employed in
a project. They may use as many (or as few) of the diagrams as needed.
Multiple instances of each viewpoint can be used to capture increasing
detail about a system. UML is a “Swiss Army Knife” of notations—it
provides stakeholders with a collection of useful notations (i.e., UML
diagrams) for accomplishing different modeling goals. UML is not
specialized for modeling any particular domain, although its diagrams
reflect a bias toward modeling systems constructed in an object-oriented
(OO) way.

Early versions of UML (1.0 and 1.1) had only limited abilities to specify
traditional architectural concepts from “under the technology lamppost”
such as components, connectors, and deployments [28]. These have been
rectified to some extent in UML 2.0. In particular, the component diagram
has been almost completely overhauled to support the notion of
components as loci of computation rather than just artifacts, as well as
explicit specification of interfaces (both provided and required) and ports.
Additionally, the new composite structure diagram allows hierarchical
modeling, which lets stakeholders better express the relationships between
different models and architectural concepts. As we have noted, however,
as UML has changed so has the understanding of what constitutes
‘software architecture.’

From the perspective of concern-driven modeling, the analogy of UML to
a Swiss Army Knife remains useful. Each UML diagram can be seen as a
tool for modeling a particular concern. However, the number of tools—
diagrams—is finite. UML does not have diagrams for modeling every
possible architectural concern. For example, there is no explicit support in
UML for capturing product variants, or the evolution of a system’s
architecture over time. Some diagrams can be employed for modeling
multiple concerns by interpreting the same symbols in different ways, or
by specializing the diagrams using UML’s extension mechanisms. In
general, UML diagrams and symbols can be interpreted in different ways
by different stakeholders. This intentional ambiguity is how UML
maintains its generic, domain-independent nature. Specialization
mechanisms allow users to define new attributes (called stereotypes and
tagged values) and constraints that can be applied to existing elements. A
collection of these additional attributes and constraints is known as a UML
profile. Profiles are used to specialize UML to reduce ambiguity and better
capture domain- and project-specific concerns.

Profiles cannot define new diagram types, however—they can only
decorate and specialize existing diagram types and their elements.

Moving Architectural Description from Under the Technology Lamppost 20

Sometimes, this is not enough. An example is SysML [38], a notation
developed by a consortium of large systems development organizations as
an extension of UML. SysML uses the built-in UML extension
mechanisms (primarily stereotypes) to specialize existing UML constructs
for specific purposes. For example, the standard UML Package element is
stereotyped with a <<DependencySet>> stereotype to represent a special
kind of package containing dependencies. However, where simply
specializing existing UML diagrams and elements is not enough, SysML
extends UML itself to include entirely new viewpoints and elements. For
example, the SysML Requirements diagram is a new view for the specific
purpose of capturing system requirements in a more detailed manner than
UML’s use case diagrams allow.

 UML Example
To illustrate how UML models a system, we present some UML models
of a basic three-tier Web application consisting of three components: a
Web browser that serves as the user interface, a business logic component
that processes data from the Web browser, and a database component that
is responsible for persistent data storage. (In a real system, each of these
coarse-grained components would likely be replaced with several finer-
grained components; the use of coarse-grained components here is to
simplify our example). The structure of the application might be modeled
using the UML component diagram shown in Figure 4.

Figure 4. UML
component diagram of
a simple Web
application.

This diagram depicts the components in the application and their
dependencies. It leverages several new features of UML 2.0: components
are now specializations of UML classes, and component instances are
modeled like objects. Additionally, this diagram uses explicit ports, as
well as provided and required interfaces to describe the dependency
relationships among the components. This is one view of the system’s
architecture. Another view might capture its behavior. The behavior of the
system might be expressed using a UML statechart diagram, as shown in
Figure 5.

Moving Architectural Description from Under the Technology Lamppost 21

Figure 5. UML
statechart diagram of a
simple Web application.

This diagram shows the behavior of the application whose structure is
depicted in Figure 4. Note that this diagram shows the overall behavior of
the application, independent of its components. A diagram that combines
aspects of both the system’s structure and behavior might be a sequence
diagram like that shown in Figure 6.

Figure 6. UML
sequence diagram for a
simple Web application.

This diagram shows one particular interaction among the components in
the system—the browser sends a POST request to the business logic
component, which updates the database, and returns a results page to the
browser, which displays the page.

These diagrams are complementary—each purports to depict the same
system from a different perspective. UML does not have a set of
consistency rules that can be used to determine whether this is the case,
however—stakeholders are responsible for defining what it means for a set

Moving Architectural Description from Under the Technology Lamppost 22

of UML diagrams to be consistent and for ultimately making that
determination3. Additionally, each diagram is ambiguous in different
ways. Although the various symbols have basic meanings in UML (e.g.,
the dashed, open-headed arrow generally represents some sort of
dependency, while the rounded rectangles in the statechart represent
various system states) their specific meanings in the context of our Web
application are not defined within the diagrams. This can be partially
rectified through the use of the extension mechanisms mentioned above.
For example, a UML profile might define stereotypes to add more detail,
elaborating the meaning of these stereotypes using natural language in a
separate document.

 UML Under the Lampposts
From the perspective of our three-lamppost model of ADL interpretation,
UML is heavily centered in the business and technology areas. UML has
significant ability to model systems from a technical perspective—
diagrams such as class and statechart diagrams allow users to express the
technical inner-workings of a system in great detail (if desired). However,
it should be noted that UML is not a notation rooted in formality, and as
such mathematical verification of technical system properties is not
generally possible. UML does take into account business needs in a much
stronger way than first-generation ADLs. Diagrams such as use case and
interaction overview diagrams capture more stakeholder and process-
oriented aspects of a system than a first-generation ADL would. Support
for domain-specific modeling is mostly accomplished through the use of
UML profiles, although profiles are not a panacea: they cannot eliminate
ambiguity, nor can they be used to create new kinds of diagrams—they
can only specialize existing diagram types.

4.2 AADL
The Architecture Analysis and Design Language (AADL, formerly the
Avionics Architecture Description Language) [2] is an ADL for specifying
system architectures. While its historical name indicates that its initial
purpose was for modeling avionics systems, the notation itself is not
specifically bound to that domain—instead, it contains useful constructs
and capabilities for modeling a wide variety of embedded and real-time
systems such as automotive and medical systems. It is an outgrowth of the
first-generation ADL MetaH developed by Honeywell [4], and is now
developed collaboratively by a group of industrial and academic

3 Of course, there have been extensive efforts to explore the issue of UML
consistency, including an entire workshop series (“Consistency problems
in UML-based Software Development”) dedicated to the topic. What has
emerged from this line of research has been a wide variety of alternative
ways of defining and checking certain types of consistency within and
across UML diagrams.

Moving Architectural Description from Under the Technology Lamppost 23

organizations. AADL is a Society of Automotive Engineers (SAE)
standard, and as such is guided by a larger, more open group than its
predecessor MetaH.

AADL can describe the structure of a system as an assembly of
components. It has special provisions for describing both hardware and
software elements, and the allocation of software components to hardware.
It can describe interfaces to those components for both the flow of control
and data. It can also capture non-functional aspects of components (such
as timing, safety, and reliability attributes). Syntactically, AADL is
primarily a textual language, although a graphical visualization and a
UML profile for it are under development. The syntax of the language is
defined using BNF production rules.

The basic structural element in AADL is the component. AADL
components are defined in two parts: a component type and a component
implementation. A component type defines the interfaces to a
component—how it will interact with the outside world. A component
implementation is an instance of a particular component type. There may
be many instances of the same component type. The component
implementation defines the component’s interior—its internal structure
and construction. One additional element that affects components is a
component’s category. AADL defines a number of categories (or kinds) of
components; these can be hardware (e.g., memory, device, processor, bus),
software (e.g., data, subprogram, thread, thread group, process), or
composite (e.g., system). The category of a component prescribes what
kinds of properties can be specified about a component or component
type. For example, a thread may have a period and a deadline, whereas
memory may have a read time, a write time, and a word size.

AADL is supported by an increasing base of tools, including a set of open-
source plug-ins for the Eclipse software development environment that
provide editing support and import/export capabilities through the
extensible markup language (XML) [9]. An additional set of plug-ins is
available for analyzing various aspects of AADL specifications—for
example, whether all the elements are connected appropriately, whether
resource usage by the various components exceeds available resources,
and whether end-to-end flow latencies exceed available time parameters.

 AADL Example
To examine how AADL models systems, we present a partial AADL
model of a sense-compute-control system. These systems are typical of
what might be modeled in AADL. Figure 7 shows this model of a
temperature sensor driver, running on a physical processor connected to a
local 33MHz 32-bit PCI bus.

Moving Architectural Description from Under the Technology Lamppost 24

Figure 7. Partial model
of a sense-compute-
control system in
AADL.

data sensor_control_data
end sensor_control_data;

data sensor_data
end sensor_data;

bus local_bus_type
end local_bus_type;

bus implementation local_bus_type.pci
properties
 Transmission_Time => 30 ns;
 Allowed_Message_Size => 4 b;
end local_bus_type.pci;

system sensor_type
features
 network : requires bus access
 local_bus_type.pci;
 sensed : out event data port sensor_data;
 control : in event data port sensor_control_data;
end sensor_type;

system implementation sensor_type.temperature
subcomponents
 the_sensor_processor :
 processor sensor_processor_type;
 the_sensor_process : process
 sensor_process_type.one_thread;
connections
 bus access network -> the_sensor_processor.network;
 event data port sensed ->
 the_sensor_process.sensed;
 event data port control ->
 the_sensor_process.control;
properties
 Actual_Processor_Binding => reference
 the_sensor_processor applies to
 the_sensor_process;
end sensor_type.temperature;

processor sensor_processor_type
features
 network : requires bus access local_bus_type.pci;
end sensor_processor_type;

process sensor_process_type
features
 sensed : out event data port sensor_data;
 control : in event data port sensor_control_data;
end sensor_process_type;

thread sensor_thread_type
features
 sensed : out event data port sensor_data;

Moving Architectural Description from Under the Technology Lamppost 25

 control : in event data port sensor_control_data;
properties
 Dispatch_Protocol => periodic;
end sensor_thread_type;

process implementation sensor_process_type.one_thread
subcomponents
 sensor_thread : thread sensor_thread_type;
connections
 event data port sensed -> sensor_thread.sensed;
 event data port control -> sensor_thread.control;
properties
 Dispatch_Protocol => Periodic;
 Period => 20 ms;
end sensor_process_type.one_thread;

The first thing to note about this specification is the level of detail at
which the architecture is described. A component
(sensor_type.temperature) runs on a physical processor
(the_sensor_processor), which runs a process
(sensor_process_type.one_thread), which in turn contains a single
thread of control (sensor_thread), all of which can receive control
instructions through an in port (control) and output temperature data
through an out port (sensed) over a PCI bus (local_bus_type.pci).
Each of these different modeling levels is connected through composition,
attachment of ports, and so on. This level of detail emphasizes the
importance of tools, such as graphical editors, for modeling this
information in a more easily understandable fashion.

The second thing to note is that several of the elements are annotated with
specific properties that describe their operation in more detail. For
example, the PCI bus transmits 4 bytes (32 bits) of information every 30
nanoseconds, and the sensor process runs and samples the temperature
every 20 miliseconds. It is these details, tailored for real-time concerns,
that make AADL’s analysis tool-set possible.

 AADL Under the Lampposts
AADL is heavily steeped in both the technology and domain areas of
concern. From a technology perspective AADL allows detailed,
automatically analyzable specifications akin to those that can be created in
first-generation ADLs (and, in fact, similar to those created in its
predecessor MetaH). It is a high-value, but high-cost notation. The kinds
of automated analyses possible with AADL models are powerful, but
models of even simple systems are verbose and complex at this level of
detail, as the example above suggests. From a domain perspective, AADL
is optimized for modeling systems in its target domain—namely
embedded, real-time, hardware/software systems. The kinds of constructs
and properties that are available are tailored for this purpose. This limits

Moving Architectural Description from Under the Technology Lamppost 26

what kinds of viewpoints and concerns can be captured in AADL, but it
also helps to focus the language. The increasing realization that no single
ADL will suffice for all modeling needs advocates solutions, such as
AADL, which have deep support for the set of needs in a particular
domain.

The kinds of analyses that AADL makes possible are driven by business
goals. For instance, making quantitative determinations early about an
embedded, real-time system (even at high cost) is important because such
systems are often safety-critical and expensive to redeploy if an error is
found. Nonetheless the language itself does not directly capture business
decisions or concerns.

4.3 Koala
Consumer electronics is a dynamic and highly competitive domain of
product development. For decades, devices such as televisions and cable
descramblers were relatively simple devices with a few, well-defined
capabilities. Over the years, these devices have become more and more
complex, largely due to enhancements in their embedded software. The
latest incarnations of these devices include features such as graphical,
menu-driven configuration, on-screen programming guides, video-on-
demand, and digital video recording and playback. In a global
marketplace, each of these devices must be deployed in multiple regions
around the world, and specifically configured for the languages and
broadcast standards used in those regions.

The increasing feature counts of consumer electronic devices are
accompanied by fierce competition among organizations, and it is just as
important to keep costs down as it is to deploy the widest range of
features. From a software perspective, keeping costs down can be done in
two primary ways: limiting the cost of software development and limiting
the resources used by the developed software and thus the costs of
hardware needed to support it. Additionally, manufacturers often “multi-
source” certain parts. That is, they obtain and use similar parts – chips,
boards, tuners, and so on — from multiple vendors, buying from vendors
who can offer the part at the right time or the lowest price, and providing
a measure of insurance against the failure of one particular part vendor to
deliver. If the parts are not completely interchangeable, software can be
used to mask the differences.

Product line architectures provide an attractive way to deal with the
diversity of devices and configurations found in the consumer electronics
domain. Product line architectures allow a single model to express the
architecture of multiple systems simultaneously, through the explicit
modeling of variation points. Each variation point captures a number of

Moving Architectural Description from Under the Technology Lamppost 27

possible alternatives. Products in the product-line are selected by
choosing from the alternatives at each variation point.

Philips Electronics has developed an approach called Koala [32] to help
them specify and manage their consumer electronics products. Koala is
primarily an architecture description language derived from the Darwin
ADL [25]. Koala also contains aspects of an architectural style, however,
since it prescribes specific patterns and semantics that are applied to the
constructs described in the Koala ADL. Koala, like Darwin, is effectively
a structural notation: it retains Darwin’s concepts of components,
interfaces (both provided and required), hierarchical compositions
(components with their own internal structures) and links to connect the
interfaces. In addition to these basic constructs, Koala has special
constructs for supporting product-line variability. Koala is also tightly
bound to implementations of embedded components: certain aspects of
Koala, such as the method by which it connects required and provided
interfaces in code, are specifically designed with implementation
strategies in mind, such as static binding through C macros.

Koala’s main innovations over Darwin include:

IDL-based interface types: An interface type in Koala is a named set of
function signatures, similar to those found in C. For example, the
interface to a TV tuner in Koala might be declared like this:

interface ITuner{
 void setFrequency(int freqInMhz);
 int getFrequency();
}

The ITuner interface type may be provided or required by any number of
Koala components. When a provided and a required interface are
connected, the provided interface type must provide at least the functions
required by the required interface type.

Diversity interfaces: One of the philosophies of Koala is that
configuration parameters for a components should not be stored in the
component; instead, configuration parameters, including selection of
alternatives, should be accessed by the component from an external
source when needed. This allows the application to be configured
centrally, from a single component or set of components whose purpose is
to provide configuration data for the application. “Diversity interfaces”
are special required interfaces that are attached to components and are
used by each component to get configuration parameters.

Switches: A switch is a new architectural construct that represents a
variation point. It allows a required interface to be connected to multiple

Moving Architectural Description from Under the Technology Lamppost 28

different provided interfaces. When the variation point is resolved, only
one of the connections will actually be present. Which provided-required
interface pair is connected depends on a configuration condition. A switch
is connected to a diversity interface to get its configuration parameters,
just as a component would. Depending on the values returned through the
diversity interface, the switch will route calls to one of the required
interfaces connected to it. If this means that there will be disconnected
components, that is, components that will never be invoked, then Koala
will not instantiate these components to save resources.

Optional Interfaces: Several components may provide similar, but not
identical, services. For example, a basic TV tuner component may have
only the ability to change frequencies, but an advanced TV tuner may be
able to search for valid frequencies as well. It is possible for callers to a
TV tuner to include an optional interface, and query whether this interface
is actually connected or not. If it is connected, the caller can make calls
on the optional interface; if not, the caller should behave/degrade
gracefully.

 Koala Example
It is easier to understand these constructs and their use with a simple
example. Like Darwin, Koala allows simple, non-product-line structural
specification. In Figure 8, we show a very simple part of an architectural
model for a television set, a consumer electronics device for which Koala
would typically be used.

Figure 8. Simple
television architecture
for a single product.

This architectural model shows two components, an NTSC tuner driver
component that receives a television signal on a selected channel and
decodes it for display, and a channel changer component that instructs the
tuner to change the channel upon a user’s request. They communicate
through an interface type ITuner, which might be specified as follows:

Moving Architectural Description from Under the Technology Lamppost 29

 void set_channel(int channel_num);

This might be (part of) the software architecture of a single television.
Because the tuner driver decodes NTSC signals, this television would be
marketed in parts of the world where NTSC signals are used—the United
States and Japan, for example. Now, consider the possibility that the
architect wants to create a product-line of televisions that might be
marketed globally, in areas where television standards are different. Here,
the channel changer component might be reused, but the tuner component
would have to be changed. The above architecture can be diversified into
a product-line architecture using a diversity interface and a switch, as
shown in Figure 9 (adapted from [32]).

Figure 9. Product line
of two products in
Koala.

Here, a switch is used to select between an NTSC tuner driver (suitable
for markets like the US and Japan) and a PAL tuner driver (suitable for
markets like Europe). A diversity interface on the channel changer
component, combined with a software module M is used to choose which
driver component to invoke. The selection is made by a configuration
component (not depicted in the figure) connected to the diversity
interface. Through these mechanisms, Koala gives architects the power to
specify and implement product lines of embedded systems.

 Koala Under the Lampposts
Koala draws from all three areas of concern: technology, domain, and
business. The explicit configurations and direct mappings to
implementations firmly root Koala descriptions in technology. The

Moving Architectural Description from Under the Technology Lamppost 30

features provided by Koala are optimized for the modeling of systems in a
particular domain—embedded systems in the consumer electronics space.
This domain is somewhat different from AADL’s, because it lacks the
real-time and safety-critical aspects. Although developed for the
consumer electronics domain, nothing in Koala prevents its use in other
embedded, component-based product lines.

The product-line aspects of Koala are driven primarily by business
concerns. Koala allows certain business decisions—the relationship
between products—to be specified directly in the language. Other
business concerns—for example, reducing time-to-market and reducing
costs through increasing reusability—influenced the particular selection
of capabilities of the Koala ADL, but are not necessarily expressed
directly in Koala models.

4.4 xADL 2.0
Our definition of software architecture characterizes it as a set of principal
design decisions about a system. As we stated earlier, whether a particular
design decision is principal or not is a function of the system’s
stakeholders and their needs. Looking beyond the technology lamppost,
and taking into account both domain- and business-specific concerns, the
diversity of stakeholder needs expands greatly. This makes the
development of a single notation that can adequately cover this variety of
stakeholder needs unlikely. UML’s approach to this problem, as we have
discussed, is to provide its users with a large set of often-ambiguous
symbols that can be given additional meaning by users through profiles.
However, this approach falls short when modeling needs arise that cannot
be easily mapped to an existing diagram type, or when users want to create
highly-optimized domain-specific notations. Ideally, it would be possible
to create optimized notations tailored to individual project needs, but
without developing the notations anew for each project.

xADL 2.0 [11] attempts to address these issues by providing a platform
upon which modeling features can be defined modularly and reused across
projects. New features can be created and added to the language as first-
class entities. xADL inherits lessons from many different ADLs: first
generation ADLs (namely, C2 [26] and xADL 1.0 [21]), as well as some
second-generation concepts such as Koala’s product lines. Its major
contribution, however, is its support for language extensions. In a way,
xADL can be seen as an ADL factory: users can use it to rapidly develop
architecture description languages tailored to their domain needs and
business goals.

xADL can best be described as a modular ADL. That is, modeling features
such as the ability to model a component or a version tree for an artifact,
are grouped into modules. The xADL language itself is a composition of

Moving Architectural Description from Under the Technology Lamppost 31

modules, and xADL users can extend the language by defining and adding
in additional modules.

xADL is an XML-based language. Each xADL module is implemented by
one XML schema [13]. XML schemas use a data type definition format
similar to data structures in an object-oriented programming language.
Like classes in an object-oriented programming language, XML schema
datatypes can be extended through inheritance. Derived datatypes can be
declared in separate schemas. Through this mechanism, datatypes declared
in one schema can be extended in a different schema. This means that
features defined in one module can be extended in other modules using
XML schema inheritance.

Each xADL schema adds a set of features to the language. The constructs
in each schema may be new top-level constructs or they may be extensions
of constructs in other schemas. Modularizing the feature set in this way
has several advantages. First, it allows for incremental adoption—users
can use as few or as many features as makes sense for their domain.
Second, it allows for divergent extension—users can extend the language
in novel, even contradictory ways—to tailor the language for their own
purposes. Third, it allows for feature reuse—because feature sets are
defined in XML schema modules, schemas can be shared among projects
that need common features without each group having to develop their
own, probably incompatible, representations for common concepts.

Here, the interplay between syntax and semantics becomes important.
XML schemas are largely concerned only with the syntax of a language
(or part of a language, when used modularly as in xADL). XML schema
does not provide facilities, beyond ad-hoc documentation comments, to
explain what individual elements mean and how they should be
interpreted. As we have seen with UML, a single syntax can be interpreted
in myriad ways to suit different purposes. For example, a syntactic
element called a ‘package’ could be interpreted to mean a conceptual
grouping of elements, a Java package, or a unit of deployment.

The semantics—the meaning—of xADL’s modules and their elements are
contained in several different places. At minimum, they can be carried in
the minds of stakeholders and passed to new stakeholders by word-of-
mouth. A better option is to document the semantics of a given feature in
project documentation or in comments in the xADL schemas themselves.
An even stronger option is to encode the semantics in tools and
visualizations that stakeholders use: tools define how stakeholders interact
with a model and can be used to provide additional context and
information about the meaning of a feature. Finally, the semantics can be
encoded in analysis tools associated with the feature, where errors in
interpretation can be identified by automated tools.

Moving Architectural Description from Under the Technology Lamppost 32

As pointed out above, xADL purposefully allows divergent extension.
This means that users can add new xADL features that conflict with
existing xADL features. Syntactic conflicts will be detected automatically
by tools like XML schema validators. Semantic conflicts—for example,
two modules expressing the same concept in conflicting ways—cannot be
automatically detected. It is up to the architect and other stakeholders to
choose or define a set of compatible feature modules, and identify
interactions between features.

From time to time, new schemas are added to xADL as they are
developed, both by its creators and by outside contributors. Current xADL
schemas include features for modeling basic architectural structure
(components and connectors) at both design-time and run-time, mappings
from architectural elements to their implementations in source code and
object code, and product-line features similar to those found in Koala.

Because xADL can be extended with unforeseen constructs and structures
in nearly arbitrary ways, it induces challenges that do not exist in
languages with stable syntax and semantics, including most of the other
ADLs we have discussed thus far. Specifically, parsers, editors, analyzers,
and other tools must be developed to cope with a notation whose syntax
may change from project to project.

xADL addresses these challenges with an associated set of tools, each of
which has specific support for dealing with new schemas. This support
may come in the form of automatic adaptation to new schemas, in the case
of syntax-directed tools, to guidance and APIs that allow developers to
plug in their own support for new schemas in a straightforward manner.
These are discussed below.

The xADL Data Binding Library: The xADL data binding library is a
library of Java classes that correspond to XML elements and attributes
defined in xADL schemas. This library provides an interface by which
tools can parse, read, modify, and serialize (write to disk) xADL
documents. To support xADL’s extensibility, the library itself is
modularized like the xADL language: each xADL schema is mapped to a
package of Java classes. Adding new packages extends the library to
support new schemas.

Apigen: The data binding library would be of limited use if it had to be
manually rewritten each time schemas were added to xADL. Apigen [12]
is a data binding library generator: given a set of XML schemas, it can
generate a complete new data binding library with support for those new
schemas. These new data binding libraries can be used in place of existing

Moving Architectural Description from Under the Technology Lamppost 33

ones without affecting applications (except to provide support for the new
schemas).

ArchEdit: ArchEdit is a GUI-based, syntax-directed editor for xADL
documents. Users navigate the xADL document using a standard tree
widget that mirrors the hierarchical structure of the xADL XML
document. The editing options available to the user — what sorts of
elements can be added and so on — are determined automatically based
on the set of xADL schemas in use. When new schemas are added,
ArchEdit adapts automatically to support them.

In addition to these tools for supporting extensibility, xADL 2.0 is
supported by a collection of tools in the ArchStudio 3 [18] environment,
which provide graphical editing and visualization support, automated
analysis, product-line specification and selection, and so on. To the extent
possible, these tools are also modularized to support xADL extensibility.
For example, ArchStudio’s graphical editor and analysis framework both
allow new additions via plug-ins, such that new visualizations, editing
behaviors, and analysis techniques for a new schema can be plugged into
the environment easily.

 xADL 2.0 Example
Returning to our UML example of a three-tier Web application, the
structure of the same xADL application might be depicted (in xADL’s
graphical visualization) as in Figure 10.

Figure 10. Graphical
visualization of a Web
application modeled in
xADL 2.0.

For space reasons, we leave out a complete description of the system in
the XML format. However, the Database component might be specified as
in Figure 11.

Figure 11. XML
specification of a
component modeled in
xADL 2.0 (some
housekeeping data
elided).

<component id="dbComp">
 <description>Database</description>
 <interface id="sql-in">
 <description>SQL</description>
 <direction>in</direction>
 </interface>
</component>

This very basic specification does not say much about the database
component, however. By writing a new xADL schema that extends the

Moving Architectural Description from Under the Technology Lamppost 34

definition of a component to better describe databases, the description
might look like Figure 12.

Figure 12. Extended
description of the
database component.

<component id="dbComp">
 <description>Database</description>
 <interface id="sql-in">
 <description>SQL</description>
 <direction>in</direction>
 </interface>
 <datasource>
 <vendor>Oracle Corp.</vendor>
 <location>db.example.com:1234/db1</location>
 <username>webUser</username>
 <password>secret</password>
 </datasource>
</component>

The new schema would extend the definition of a component to add a
<datasource> element; the contents of this element would also be defined
in the schema. Other properties of this component, and other components,
are modeled in xADL 2.0 similarly.

 xADL 2.0 Under the Lampposts
xADL 2.0 addresses aspects of technology, business, and domain directly.
Technology-centric xADL features include the ability to model
architectural structure, types, and instances. Business-related schemas
include xADL’s product-line schemas, which allow xADL to track the
evolution of products over time and the relationships of products to one
another. xADL has a few domain-specific schemas, such as schemas for
modeling the behavior of asynchronous message-based systems; outside
users have added their own domain-specific schemas.

xADL’s primary contribution, however, is that it addresses all three
lampposts at the meta-level. That is, by providing users the ability to
rapidly develop their own language extensions and tools, xADL users can
customize the language for their own technology, domain, and business
goals. In this way, it serves as a kind of factory for second-generation
ADLs. It is this facet that renders xADL unique in comparison to all the
other notations discussed in this paper.

5 Discussion
Several insights have emerged from our retrospective examination of the
evolution of ADLs.

Growing numbers of concerns are being considered part of a system’s
architecture. First-generation ADLs reflect a relatively narrow view of
what constitutes a system’s architecture. Many of them focus on modeling

Moving Architectural Description from Under the Technology Lamppost 35

structural views of a system, perhaps annotating the structural view with
additional properties to capture one or two more concerns, such as
behavior or implementation mappings. Second-generation ADLs take a
decidedly more holistic approach, capturing a wider variety of concerns
that might be of interest to stakeholders. In this sense, architecture
modeling is becoming less feature-centric and more stakeholder-centric.

More mature and successful ADLs incorporate concerns rooted in
technology, domain, and business needs. First-generation ADLs were
largely developed to address technological and theoretical concerns—
deadlock freedom, for example. While these capabilities are indeed
powerful, they are often not the most critical properties of interest to
stakeholders. Domain and business needs, both strong foci of traditional
systems engineering practices, are now shaping software architecture
description languages.

Multiple views are a necessity. As the scope of architectural concerns
grows, unified architectural models that present all information about a
system’s architecture at once become impractically large. To be
cognitively manageable, they must be partitioned into multiple views that
show only a subset of concerns at once. The use of multiple views
introduces difficulties, such as consistency management among the views,
but these difficulties must be overcome to do multi-concern modeling.

No single set of modeling features is sufficient for every project. Even
the richest composite notations, such as UML 2.0, will still be inadequate
to satisfy every project’s modeling needs. In architecture modeling, one
size will never fit all. This is not to say that general-purpose notations are
not worthwhile. In fact, they have certain attractive advantages, many of
which derive from economies of scale. A general-purpose notation can
attract more users, and therefore will likely be better validated, have more
tool support from vendors, and have increased utility as a communication
medium among stakeholders. However, such a notation can never be as
expressive or highly optimized as a domain-specific notation.

Extensibility is a key property of modeling notations. This follows
from the earlier insights above: if general-purpose notations are useful but
insufficient, and architectural concerns vary across domains and projects,
a natural and effective solution is the use of extensible modeling notations.
Extensible notations provide a basic, general purpose foundation for
architectural modeling along with mechanisms that allow stakeholders to
specialize the notation for their particular technology, domain, and
business needs.

Tools are as important as notations. The main power of a notation
comes not through its syntax or even its semantics, but the tools that can

Moving Architectural Description from Under the Technology Lamppost 36

be used to operate on the notation. All of the second-generation ADLs we
surveyed are supported by a variety of software tools and environments,
for editing, visualization, analysis, creating extensions, and so on.
Arguably, good tool support from major vendors was a driving force
behind the widespread adoption of UML. Conversely, lack of good tool
support can doom an otherwise excellent ADL to obscurity—something
that we would argue was at least in part the case with several first-
generation ADLs.

5.1 The Relationship between Methodologies and ADLs
In this paper we have looked at ADLs in terms of how well the languages
themselves support modeling concerns from under the domain, business,
and technology lampposts. The activity of developing and evolving a
successful architecture, however, does not stand or fall on modeling
notations alone. Instead, a wide variety of factors has to be considered,
including how those notations are used in developing an architecture. A
well-constructed ADL combined with a poor process will often result in a
poorly-defined architecture. For an ADL such as UML, which does not
enforce precise semantics or any particular method of use, processes and
methodologies become critically important to developing high-quality
architectures.

ADLs themselves often imply one or more methods for developing models
in that ADL. For example, an iterative process of modeling, language
extension, and tool extension is favorable for xADL, while methods like
top-down and bottom-up design might be favorable for AADL. These,
however, are ‘micro-processes’ that fit within larger processes that govern
software development throughout the lifecycle. ADLs can be integrated
into these broader processes as well; perhaps the best examples we have
seen are development processes that have been created with UML in mind.
For example, many phases of the Rational Unified Process (RUP) [22]
leverage UML models as inputs and outputs, and many efforts to
implement Model-Driven Architecture (MDA) [31] processes use UML as
a primary modeling notation.

At this point, synergy between the development of software development
processes and architecture description languages is just beginning to
occur. As ADLs expand beyond the boundaries of the technology
lamppost, we can expect that architecture-centric processes, some
optimized for particular ADLs, will more substantially emerge in the
future.

6 Conclusions and Future Trends
Our initial classification and comparison of ADLs [27] has been a useful
reference point to researchers and practitioners, and has stood the test of

Moving Architectural Description from Under the Technology Lamppost 37

time in many ways. All the same, it was a very technologically oriented
study that largely ignored the other two lampposts. There are two clear
reasons for this. The first is that ADLs themselves (and, it could be
argued, even software architecture) were not sufficiently well understood
at the time. The second reason behind the limited scope of our original
study is that no first-generation ADLs extensively supported architectural
concerns beyond the technology lamppost.

This paper has presented a new perspective on architecture and
architecture description languages, which spans the three lampposts. We
believe that this perspective provides a basis for a much more thorough
treatment of ADLs. However, we are not so naïve as to think that this
particular study will “close the book” on our collective understanding of
software architectures and ADLs. In fact, having looked at both the first-
and the second-generation ADLs through the prism of the three lampposts,
a natural question to ask ourselves is: will there be a “third generation” of
ADLs?

Certainly, even the best current architecture description notations leave a
lot to be desired, so notations will undoubtedly continue to be developed
and evolved. At the least, we should expect to see continued advances in
the fundamentals of architecture modeling; it is unlikely that, for example,
an ideal formal semantics will emerge that provides the basis for all
architecture analysis activities in the future. Researchers will undoubtedly
continue to investigate the best ways to detect deadlock, capture product-
lines, and make judgments about software qualities, all based on
architecture models.

If there is to be a major leap forward resulting in a third generation of
ADLs, it will likely emerge from an even deeper confluence between
high-level domain and business concerns of systems engineering and
lower-level technological concerns derived from software engineering. For
example, few ADLs today take into account concerns such as human
organizations, costs, risks, and processes, while consideration of these
factors is a key aspect of systems engineering. It seems likely that future
architecture modeling approaches will begin to incorporate these concerns.

An additional area in which ADLs will likely see improvement is in their
expansion to other lifecycle activities. Architectural modeling is still very
much design-centric. Second-generation ADLs generally have some
support for tracing architectural design to other lifecycle activities—
SysML’s requirements view, or xADL 2.0’s implementation mappings,
for example. As architecture modeling notations mature, we should expect
to see even stronger traceability to activities such as requirements,
implementation, testing, maintenance, evolution, and so on. Such

Moving Architectural Description from Under the Technology Lamppost 38

developments are needed to fully realize the central role that we feel
architecture should play in software development.

7 Acknowledgments
This material is based upon work sponsored in part by the National
Science Foundation under Grant numbers CCR-9985441, ITR-0312780,
CCF-0430066, and CNS-0438996. The content of the information does
not necessarily reflect the position or the policy of the Government or any
sponsor and no official endorsement should be inferred. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the
National Science Foundation. The authors also wish to express their
appreciation to the numerous helpful comments and suggestions made by
the anonymous reviewers.

8 References
[1] Allen, R. A Formal Approach to Software Architecture. Ph.D. Thesis. Carnegie

Mellon University, p. 248, 1997. <http://reports-
archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-144.pdf>.

[2] Allen, R., Vestal, S., Lewis, B., and Cornhill, D. Using an architecture description
language for quantitative analysis of real-time systems. In Proceedings of the
Third international workshop on Software and performance. p. 203-210, ACM
Press. Rome, Italy, 2002.
<http://portal.acm.org/citation.cfm?doid=584369.584399>.

[3] Batory, D., Coglianese, L., Shafer, S., and Tracz, W. The ADAGE Avionics
Reference Architecture. In Proceedings of the AIAA Computing in Aerospace-10
Conference. March, 1995.

[4] Binns, P., Englehart, M., Jackson, M., and Vestal, S. Domain-Specific Software
Architectures for Guidance, Navigation and Control. International Journal of
Software Engineering and Knowledge Engineering. 6(2), p. 201-227, June, 1996.

[5] Boehm, B., Abts, C., Brown, W., Chulani, S., Clark, B., Horowitz, E., Madachy,
R., Reifer, D., and Steece, B. Software Cost Estimation with COCOMO II.
Prentice Hall: New Jersey, 2000.

[6] Booch, G. Object-Oriented Analysis and Design with Applications. Benjamin-
Cummings, 1993.

[7] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language User
Guide. Object Technology Series. Addison Wesley Professional: Reading,
Massachusetts, 1998.

[8] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language User
Guide. 2nd ed. Addison-Wesley Object Technology Series. Reading,
Massachusetts: Addison-Wesley Professional, 2005.

[9] Bray, T., Paoli, J., and Sperberg-McQueen, C.M. Extensible Markup Language
(XML): Part I. Syntax. World Wide Web Consortium, Recommendation Report,
February, 1998. <http://www.w3.org/TR/1998/REC-xml>.

Moving Architectural Description from Under the Technology Lamppost 39

[10] Carnegie Mellon University. How Do You Define Software Architecture?
<http://www.sei.cmu.edu/architecture/definitions.html>, Software Engineering
Institute, Webpage, 2005.

[11] Dashofy, E., Hoek, A.v.d., and Taylor, R.N. A Comprehensive Approach for the
Development of XML-Based Software Architecture Description Languages.
Transactions on Software Engineering Methodology (TOSEM). 14(2), p. 199-245,
April, 2005.

[12] Dashofy, E.M. Issues in Generating Data Bindings for an XML Schema-Based
Language. In Proceedings of the Workshop on XML Technologies in Software
Engineering (XSE 2001). Toronto, Canada, May 15, 2001.

[13] Fallside, D.C. XML Schema Part 0: Primer. World Wide Web Consortium, W3C
Recommendation Report, May 2, 2001. <http://www.w3.org/TR/xmlschema-0/>.

[14] Feiler, P.H., Lewis, B., and Vestal, S. The SAE Avionics Architecture Description
Language (AADL) Standard: A Basis for Model-Based Architecture-Driven
Embedded Systems Engineering. In Proceedings of the RTAS 2003 Workshop on
Model-Driven Embedded Systems. Washington, D.C., May, 2003.

[15] Garlan, D., Monroe, R.T., and Wile, D. ACME: An Architecture Description
Interchange Language. In Proceedings of the CASCON '97. p. 169-183, IBM
Center for Advanced Studies. Toronto, Ontario, Canada, November, 1997.
<http://www-2.cs.cmu.edu/afs/cs/project/able/ftp/acme-cascon97/acme-
cascon97.pdf>.

[16] Gorlick, M.M. and Razouk, R.R. Using Weaves for Software Construction and
Analysis. In Proceedings of the 13th International Conference on Software
Engineering. p. 23-34, May, 1991.

[17] Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming. 8, p. 231-274, 1987.

[18] Institute for Software Research. ArchStudio, An Architecture-based Development
Environment. <http://www.isr.uci.edu/projects/archstudio/>, University of
California, Irvine.

[19] Inverardi, P. and Wolf, A.L. Formal Specification and Analysis of Software
Architectures Using the Chemical Abstract Machine Model. IEEE Transactions
on Software Engineering. 21(4), p. 373-386, April, 1995.
<http://citeseer.nj.nec.com/inverardi95formal.html>.

[20] Jacobson, I. Object-Oriented Software Engineering: A Use Case Driven
Approach. 1st ed. 552 pgs., Addison-Wesley Professional, 1992.

[21] Khare, R., Guntersdorfer, M., Oreizy, P., Medvidovic, N., and Taylor, R.N.
xADL: Enabling Architecture-Centric Tool Integration with XML. In
Proceedings of the 34th Hawaii International Conference on System Sciences
(HICSS-34), Software mini-track. Maui, Hawaii, January 3-6, 2001.

[22] Kruchten, P. The Rational Unified Process: An Introduction. 3rd ed. 320 pgs.,
2003.

[23] Luckham, D.C. and Vera, J. An Event-Based Architecture Definition Language.
IEEE Transactions on Software Engineering. 21(9), p. 717-734, September, 1995.

[24] Luckham, D.C. Rapide: A Language and Toolset for Simulation of Distributed
Systems by Partial Ordering of Events. In Proceedings of the DIMACS Partial
Order Methods Workshop IV. Princeton University, July, 1996.

Moving Architectural Description from Under the Technology Lamppost 40

[25] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. Specifying Distributed
Software Architectures. In Proceedings of the 5th European Software
Engineering Conference (ESEC 95). 989, p. 137-153, Springer-Verlag, Berlin.
1995.
<http://citeseer.nj.nec.com/rd/0%2C55239%2C1%2C0.25%2CDownload/http://ci
teseer.nj.nec.com/cache/papers/cs/617/ftp:zSzzSzdse.doc.ic.ac.ukzSzdse-
paperszSzdarwinzSzesec.pdf/magee94specifying.pdf>.

[26] Medvidovic, N., Oreizy, P., Robbins, J.E., and Taylor, R.N. Using Object-
Oriented Typing to Support Architectural Design in the C2 Style. In Proceedings
of the ACM SIGSOFT '96 Fourth Symposium on the Foundations of Software
Engineering. p. 24-32, ACM SIGSOFT. San Francisco, CA, October, 1996.
<http://www.isr.uci.edu/architecture/papers/ADL-FSE96.pdf>.

[27] Medvidovic, N. and Taylor, R.N. A Classification and Comparison Framework
for Software Architecture Description Languages. IEEE Transactions on Software
Engineering. 26(1), p. 70-93, January, 2000. Reprinted in Rational Developer
Network: Seminal Papers on Software Architecture. Rational Software
Corporation, <http://www.rational.net/>, 2001.

[28] Medvidovic, N., Rosenblum, D.S., Redmiles, D., and Robbins, J. Modeling
Software Architectures in the Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology. 11(1), p. 2-57, January, 2002.

[29] Mellor, S.J. and Balcer, M.J. Executable UML: A Foundation for Model Driven
Architecture. 1st ed. 416 pgs., Addison-Wesley Professional, 2002.

[30] Melton, R. The Aesop System: A Tutorial. The ABLE Project. <http://www-
2.cs.cmu.edu/afs/cs/project/able/www/aesop/html/tutorial/aesop-demo.html>,
School of Computer Science, Carnegie Mellon University, HTML.

[31] Mukerji, J. and Miller, J. eds. MDA Guide Version 1.0.1. Object Management
Group, 2003.

[32] Ommering, R.v., Linden, F.v.d., Kramer, J., and Magee, J. The Koala Component
Model for Consumer Electronics Software. IEEE Computer. 33(3), p. 78-85,
March, 2000.

[33] Perry, D.E. and Wolf, A.L. Foundations for the Study of Software Architecture.
ACM SIGSOFT Software Engineering Notes. 17(4), p. 40-52, October, 1992.
<http://citeseer.nj.nec.com/perry92foundation.html>.

[34] Prieto-Diaz, R. and Neighbors, J.M. Module Interconnection Languages. Journal
of Systems and Software. 6(4), p. 307-334, 1986.
<http://www.cs.jmu.edu/users/prietorx/RubenPubs/publications/MILpaperPC.doc
>.

[35] Ricks, K.G., Weir, J.M., and Wells, B.E. SADL: Simulation Architecture
Description Language. International Journal of Computers and Their
Applications. 9(3), December 2002, 2002.
<http://www.eb.uah.edu/~wells/papers/isca2002.pdf>.

[36] Rumbaugh, J., Blaha, M., Lorensen, W., Eddy, F., and Premerlani, W. Object-
Oriented Modeling and Design. 1st ed. Prentice Hall, 1990.

[37] Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., and Zelesnik, G.
Abstractions for Software Architecture and Tools to Support Them. IEEE

Moving Architectural Description from Under the Technology Lamppost 41

Transactions on Software Engineering. 21(4), p. 314-335, April, 1995.
<http://citeseer.nj.nec.com/shaw95abstractions.html

http://ieeexplore-beta.ieee.org/iel1/32/8744/00385970.pdf>.
[38] SysML Partners. Systems Modeling Language (SysML) Specification version 0.9.

Report, p. 270, January 10, 2005. <http://www.sysml.org/artifacts/spec/SysML-
v0.9-PDF-050110R1.pdf>.

[39] Taylor, R.N., Medvidovic, N., Anderson, K.M., E. James Whitehead, J., Robbins,
J.E., Nies, K.A., Oreizy, P., and Dubrow, D.L. A Component- and Message-
Based Architectural Style for GUI Software. IEEE Transactions on Software
Engineering. 22(6), p. 390-406, June, 1996.

[40] Telecommunication Standardization Sector of ITU. Specification and Description
Language (SDL). Report ITU Standard Z.100, 2002. <http://www.itu.int/ITU-
T/studygroups/com17/languages/Z100.pdf>.

[41] Tracz, W. LILEANNA: A Parameterized Programming Language. In
Proceedings of the Second International Workshop on Software Reuse. p. 66-78,
1993.

[42] Warmer, J.B. and Kleppe, A.G. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley Object Technology Series. Addison-
Wesley Professional, 1998.

