
A Comprehensive Approach for the
Development of Modular Software
Architecture Description Languages

ERIC M. DASHOFY, ANDRÉ VAN DER HOEK, and RICHARD N. TAYLOR
University of California, Irvine

Research over the past decade has revealed that modeling software architecture at the level of com-
ponents and connectors is useful in a growing variety of contexts. This has led to the development of
a plethora of notations for representing software architectures, each focusing on different aspects of
the systems being modeled. In general, these notations have been developed without regard to reuse
or extension. This makes the effort in adapting an existing notation to a new purpose commensu-
rate with developing a new notation from scratch. To address this problem, we have developed an
approach that allows for the rapid construction of new architecture description languages (ADLs).
Our approach is unique because it encapsulates ADL features in modules that are composed to
form ADLs. We achieve this by leveraging the extension mechanisms provided by XML and XML
schemas. We have defined a set of generic, reusable ADL modules called xADL 2.0, useful as an
ADL by itself, but also extensible to support new applications and domains. To support this exten-
sibility, we have developed a set of reflective syntax-based tools that adapt to language changes
automatically, as well as several semantically-aware tools that provide support for advanced fea-
tures of xADL 2.0. We demonstrate the effectiveness, scalability, and flexibility of our approach
through a diverse set of experiences. First, our approach has been applied in industrial contexts,
modeling software architectures for aircraft software and spacecraft systems. Second, we show how
xADL 2.0 can be extended to support the modeling features found in two different representations
for modeling product-line architectures. Finally, we show how our infrastructure has been used
to support its own development. The technical contribution of our infrastructure is augmented by
several research contributions: the first decomposition of an architecture description language into
modules, insights about how to develop new language modules and a process for integrating them,
and insights about the roles of different kinds of tools in a modular ADL-based infrastructure.

This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-
00-2-0599. The work was also partially funded by the National Science Foundation under Grant
Nos. CCR-0093489 and IIS-0205724. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of the
National Science Foundation, the Defense Advanced Research Projects Agency (DARPA), the Air
Force Laboratory, or the U.S. Government.
Authors’ address: Institute for Software Research, University of California, Irvine, CA. 92697;
email: {edashofy,andre,taylor}@ics.uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1049-331X/05/0400-0199 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005, Pages 199–245.

200 • E. M. Dashofy et al.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures;
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms: Design, Languages

Additional Key Words and Phrases: Architecture description languages, XML, xADL 2.0,
ArchStudio 3

1. INTRODUCTION

Software architecture-based development addresses software at a higher-level
of abstraction than objects or lines of code [Perry and Wolf 1992]. At a minimum,
software architecture deals with software systems consisting of components
(loci of computation), connectors (loci of communication), and configurations
(arrangements of components and connectors, and properties of that arrange-
ment). At this level of abstraction, many aspects of a software system can be
modeled: its topology, behavior, usage scenarios, deployment profile, and so on.
Each of these aspects may also be modeled at different levels of detail or in
different ways. Each way of modeling can bring its own advantages, perhaps
providing a new way to analyze or simulate the system or to explain the system’s
structure to other developers.

Despite these advantages, software architecture research has yet to make a
significant impact on software engineering in practice. We believe that this can
be partially attributed to the fact that current techniques and tools for model-
ing software architectures (and leveraging the information contained in those
models) have failed to meet the needs of software engineering practitioners.
Making software architecture cost-effective requires that the notations, tools,
and techniques used model the important aspects of a system at the right level
of detail.

The result of a decade of research has been a plethora of notations for rep-
resenting software architectures, usually in the form of architecture descrip-
tion languages (ADLs) [Medvidovic and Taylor 2000]. In general, the notations
developed to date each support a single research goal. However, to be use-
ful in a real-world context, software architecture research must move beyond
single-purpose notations. Architectures must capture many aspects of a soft-
ware system simultaneously. Furthermore, the set of aspects that are impor-
tant enough to model varies from domain to domain. For example, embedded
systems projects may require extensive, detailed modeling capabilities for tim-
ing and power consumption, while distributed systems may require modeling
aspects of fault tolerance and bandwidth usage. Despite this wide spectrum
of needs across domains, however, many projects will also share some model-
ing needs. For example, both embedded and distributed system architects may
be concerned with tracking and managing the evolution of their architectures
across product releases. Projects within a domain will typically exhibit even
larger sets of common concerns.

The wide differences in modeling priorities and needs across domains in-
dicates that a satisfactory “one-size-fits-all” ADL is unlikely to emerge. How-
ever, the significant commonalities that exist, even among disparate domains,

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 201

indicate that developing new notations for each domain (or project) from scratch
means consistently reinventing the wheel. Therefore, a middle ground is neces-
sary: one that allows architects to choose from the common architecture-level
aspects of the software system those aspects they want to model and to easily
add to those their own concerns.

We hypothesize that such a middle ground exists in the form of an infrastruc-
ture in which ADLs can be quickly constructed, combining compatible model-
ing features and allowing explorative integration of new features as necessary.
These ADLs would be modular rather than monolithic: modeling features would
be encapsulated in modules and modules would be composed into ADLs. This
will reduce the amount of effort it takes for architects to obtain a notation that
helps them to model the “right” aspects of their systems at the “right” level of
detail.

This raises many interesting research questions. What is an effective set of
technologies to create a modular notation? How can ADL features be effectively
modularized and later composed? How can feature modules be developed so as
to maximize reusability and compatibility with other modules that may be inde-
pendently developed? What is the process by which architects can develop new
features (or new ADLs), and how can tools support this process? How can tools
be constructed in this context to maximize their reusability and applicability?

To answer these questions, we have taken an empirical approach. First, we
have created an infrastructure for the creation and use of modular ADLs. This
infrastructure provides:

(1) an XML-based modular extension mechanism for defining ADLs;
(2) a base set of features that can be reused in ADL development, supporting

design-time and run-time modeling, implementation mappings, and prod-
uct lines; and

(3) a flexible set of tools to support ADL development and use.

Second, we followed up the creation of this infrastructure with four evalua-
tion cases in different domains, both to test the infrastructure and to give us
additional insights regarding the research questions at hand. The results of
these experiences indicate that our infrastructure is generic, extensible, scal-
able, capable of modeling advanced features from other ADLs, and capable of
supporting its own development.

The primary research contributions of our approach are the first decomposi-
tion of an architecture description language into modules, insights about how to
develop new language modules and a process for integrating them, and insights
about the roles of different kinds of syntactic and semantic tools in a modular
infrastructure. In addition, the infrastructure itself represents a technical con-
tribution in the form of modeling features and tools that can be used in practice.
Use of this infrastructure results in a significant overall reduction in effort com-
pared to developing ADLs and supporting tools from scratch. Tool support for
extensible ADLs is especially important. While it may be relatively easy to
change the definition of a language, adapting tools to support a modified lan-
guage has been costly. We take this into account by using a two-tiered approach.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

202 • E. M. Dashofy et al.

A first layer of tools is primarily syntactic: these tools generate their behaviors
and interfaces from XML schemas directly, adapting to language changes and
new modules automatically. A second layer of tools is primarily semantic: these
tools leverage the syntactic tools, but also make assumptions about the mean-
ings of elements specified in language modules. Because of this, the semantic
tools are generally more capable and user-friendly than the syntactic tools at
the cost of changes and updates when the underlying language changes.

A research question we chose not to address is how to ensure semantic com-
patibility among ADL features. Our approach primarily addresses syntactic
compatibility and extensibility. Semantics are a more complex issue. The fea-
ture interaction problem [Zave 1999] has been described as the primary problem
in extensible language development [Berners-Lee and Connolly 1998; Peake
and Salzman 1997]. In our approach, ensuring semantic compatibility among
language features is the responsibility of the ADL developer. This is not unique
to our approach; developers who create new ADLs from scratch must also ad-
dress feature interactions.

The remainder of this article is organized as follows. Section 2 provides
background material about software architectures, ADLs in general, and XML.
Section 3 provides a high-level introduction to our approach. Section 4 discusses
our set of reusable ADL features. Section 5 details the tools we have developed to
support ADL development. Section 6 discusses how our infrastructure has been
applied in several domains. Section 7 summarizes our main research results
and describes the insights we developed while building and using our infras-
tructure. Section 8 compares our work to related projects. Finally, Section 9
concludes the article and discusses future work.

2. BACKGROUND

Understanding our approach requires a background in software architecture
research, the large body of previous work in developing software architecture
description languages (ADLs), and some information on XML itself.

2.1 Software Architecture

Since the development of abstraction and modularization in software develop-
ment, abstract models (formal or otherwise) of a system’s structure have played
a key role in the development of large software systems. As the complexity of
systems has increased, support for more and more abstract concepts in pro-
gramming languages and environments has also increased. Object- oriented
development, for example, provides a useful abstraction above the level of pro-
gram statements by encapsulating related functionality and state in a single
construct: the object. Software architecture research has resulted in a level of
abstraction above that of simple objects, modules, or lines of code [Perry and
Wolf 1992]. Architecture descriptions of software systems are generally com-
posed of at least three key entities: components, connectors, and configurations
[Medvidovic and Taylor 2000].

Components are the loci of computation in an architecture, and may be state-
ful. In this way, they resemble objects, but components and objects differ in

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 203

several ways. Components tend to be larger than objects, often encapsulat-
ing an entire off-the-shelf library or tool. Components are rarely created and
destroyed in the life of a software system, objects are created and destroyed
constantly [Szyperski 1997].

Connectors are the loci of communication in an architecture. Connectors may
be implicit, like a procedure call, or explicit, resembling a component. Simple
connectors may be implemented as a basic message queue or API entrypoint,
complex connectors may encapsulate middleware or cross process boundaries.
This can blur the distinction between components and connectors; a good rule
of thumb is that connectors may change the form or syntax of the data they
convey but generally do not affect application-level semantics; that is, they do
not change the meaning of the data [Mehta et al. 2000].

Configurations describe how components and connectors are arranged, as
well as the properties of that particular arrangement. Most commonly, this is
expressed through a set of explicit component-to-connector links that define an
architectural topology. Alternatively, it may include constraints or patterns on
arrangements of components and connectors, or how they behave.

2.2 Architecture Description Languages

Beyond components, connectors, and configurations, a description of a software
system at the architectural level can contain almost any kind of information.
The kinds of information present in an architecture description are influenced
by the domain in which the software is being developed and how the architecture
description is being used.

The proliferation of specialized architecture description languages over the
past decade confirms this. Wright [Allen and Garlan 1997] extends component
and connector specifications with behavioral information in the language of
communicating sequential processes (CSP) [Hoare 1978] so that architectures
can be analyzed. Rapide [Luckham et al. 1995] describes components with par-
tially ordered event sets called POSETs so that their behavior can be simu-
lated. Darwin [Magee et al. 1995] describes configurations of systems that are
distributed across multiple processes and machines.

Despite the fact that these notations share many common conceptual ele-
ments (components, connectors, interfaces, links, and so on), they do not share
even a syntactic basis. This renders each notation’s tools incompatible with the
others. Other ADLs such as Weaves [Gorlick and Razouk 1991] and MetaH
[Binns et al. 1996] are similarly incompatible. To compound the problem, all
these languages lack support for extensibility, so adding features to any of them
would require significant changes to all its supporting tools.

The most notable exception to this from the architecture community is Acme
[Garlan et al. 2000] which was developed as an architectural interchange lan-
guage. The Acme core consists of basic types of constructs that occur in prac-
tically every architecture notation: components, connectors, interfaces (called
ports and roles), links (called connections), and so on. Each of these core entities
is decorated with a set of arbitrary name-value pair properties. This strategy
allows some extensibility, but its usefulness is hampered by several constraints.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

204 • E. M. Dashofy et al.

Fig. 1. Sample marked-up text in XML.

(1) It is not possible to extend the core set of elements (components, connec-
tors, ports, roles) to add new first-class entities. This prohibits architectural
constructs that are not naturally represented as decorations on one of the
core elements such as component version trees.

(2) It is difficult to encode and manage complex data structures as sets of name-
value pair properties.

(3) Acme is not supported by a metalanguage that allows description of allow-
able properties and their format.

Thus, Acme’s ability to serve as a general-purpose interchange language or
extensible ADL is diminished.

2.3 XML as a Basis for an Extensible Modeling Language

Constructing an extensible modeling language for software systems requires
a way to define allowable constructs in the language and a way to extend or
change constructs in the language to add or modify features. Many metalan-
guages and environments exist in which an extensible, modular language can be
created, among them XML [Bray et al. 1998], Lisp [Steele 1990], GME [Ledeczi
et al. 2000], and DOME [Honeywell Inc. 1999]. From a technical and theoreti-
cal perspective, we could have used any of these environments to develop our
infrastructure (although they are not all equivalent; technical differences be-
tween these approaches are discussed further in Section 8.2). From a practical
perspective, however, XML has far more support from standards committees,
tool vendors, and practitioners than any other alternative. XML is platform-
neutral, unbound to any particular hardware or network architecture. Many
ancillary standards support XML, such as XLink [DeRose et al. 2001], which
allows linking within and between XML documents, and XPath [Clark and
DeRose 1999], which allows indexing of specific elements and attributes within
a document. A plethora of off-the-shelf tools for constructing, visualizing, stor-
ing, and manipulating XML documents are available. This is not to say that
XML is by any means perfect even for our application. Specific drawbacks of
using XML are detailed in Section 7.3. We believe, however, that XML’s sup-
port for modular extensibility and extrinsic benefits far outweigh its technical
drawbacks.

XML documents are text documents in which some of the text is marked up
using specially formatted tags that define the beginning and end of a segment of
marked-up text. Data delimited by a start and end tag is known as an element;
start tags can contain additional annotations called attributes. Data marked
up with elements and attributes is shown in Figure 1.

It is possible to introduce a grammar of elements and attributes over
XML documents using one of several available metalanguages. Several

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 205

metalanguages for defining XML grammars are available, two of which have
been standardized by the World Wide Web Consortium (W3C): DTDs and XML
schemas [Fallside 2001]. DTDs offer limited mechanisms for supporting mod-
ular extensibility as evidenced in the Modularization of XHTML standard
[Altheim et al. 2001]. However, XML schemas are much more capable in this
regard, offering an easy way to define constructs in one schema and extend
them in another through a mechanism very similar to object-oriented subtyp-
ing. A subtype can add new elements and attributes to the content model of
its supertype. Unlike in object-oriented types, however, XML schema subtypes
can also be more restrictive than their supertypes in certain ways. Specifically,
they can restrict the cardinality of elements in their supertype. For example, if
an element in the supertype has cardinality 0-n, the cardinality of the element
in a restricted subtype could be 0-0, eliminating the element entirely.

3. APPROACH

Existing architecture description languages are either too specific (e.g., single-
purpose ADLs like Rapide, Darwin, or Koala) or too general (e.g., Acme). Fur-
thermore, the cost to adapt a notation and its tools to support a new feature—
even when that feature only slightly extends the capabilities of the target
ADL—is prohibitively expensive. To remedy this, we have developed an in-
frastructure supporting modular extensibility. Our objectives in building this
infrastructure were:

—It must place as few limits on what can be expressed at the architecture level
as possible;

—It should allow new modeling features to be added and existing features to
be modified over time;

—It should allow experimentation with new features and combinations of
features;

—It should provide a library of generically useful modules applicable to a wide
variety of domains;

—It should allow modeling features, once defined, to be reused in other projects;
and

—It should provide tool-builders with support for creating and manipulating
architecture models, even when the underlying notation can and will change.

The core elements of our infrastructure are shown in Figure 2. At the base
of the infrastructure is a collection of language modules, realized in our im-
plementation as XML schemas. These schemas define modeling constructs and
extend modeling constructs from other schemas. Some of these schemas are rel-
atively generic, containing modeling features applicable to many domains. In
our infrastructure, these generic schemas are collectively called xADL 2.0 and
are described in Section 4. Other schemas may be more domain-specific such as
those described in Section 6.2. Decomposing features into individual schemas is
nontrivial and is (we believe) the key contributor to maintaining the flexibility
of this infrastructure. Above this language layer is a layer of syntax-oriented
tools. These tools leverage the syntax defined in the schemas to automatically

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

206 • E. M. Dashofy et al.

Fig. 2. Approach overview depicting the relationship between language modules as realized in
XML schemas, syntactic tools that work on any schemas, and schema-specific semantic tools.

provide services that are generically useful regardless of the contents of any par-
ticular schema—these include parsers, serializers, data bindings, and syntax-
directed editors. The primary advantage of these tools is that they do not need
to be changed when new schemas are added to the language layer. Finally, the
infrastructure contains a layer of semantic tools. These tools are built to sup-
port features of specific schemas in the language layer and generally use the
syntax-oriented tools to read and write architecture descriptions. These tools
may include visual editors, analysis tools, code generators, and so on. Because
these tools are bound to specific schemas and schema features, they may need
to be changed when the schemas in the language layer change.

This infrastructure promotes a straightforward process for software
architecture-based development. First, the architect looks for an ADL (in this
case, a composition of schemas) that has already been developed that meets
the needs of the current project. If no such ADL exists, then the closest ADL
(the one with the most features/modules applicable to the current project) is
chosen. Unneeded modules can be removed. Additional features required can
come from one of three sources: by reusing modules from other ADLs, by extend-
ing existing modules, or by developing new modules if no suitable basis exists.
Obviously, reusing or extending existing modules is preferable to developing
new ones because of the potential to also reuse the accompanying engineering
knowledge and, more importantly, semantic tools that were developed along
with the original modules.

4. XADL 2.0: A GENERIC BASE FEATURE SET

Architecture description languages must minimally provide methods for de-
scribing components, connectors, interfaces, and links. Beyond this core, each

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 207

Fig. 3. xADL 2.0 XML schemas and their relationships.

domain will have unique modeling needs. However, there are some ADL fea-
tures that are generally applicable and desirable across many diverse domains.
We believe that well-designed implementations of these features that are syn-
tactically and semantically compatible with each other and the core constructs
are a key part of a successful ADL development infrastructure.

Accordingly, we have used XML schemas to define a set of generic constructs
that are useful for modeling software architectures across many domains. These
constructs can be used as is, or they can be extended to support additional
modeling features. Instead of defining all these generic constructs in one large,
monolithic XML schema, we have elected to group them in schemas based on
their intended purpose. The result is a set of reusable “modules” that together
comprise a generic ADL, known as xADL 2.0 [Dashofy et al. 2001]. The cur-
rent set of xADL 2.0 schemas and their dependency relationships are shown in
Figure 31.

Cognizant that these schemas will be used in many domains, we have at-
tempted to keep them as generic as possible. For example, xADL 2.0 defines
basic constructs like components and connectors but does not dictate how they
must behave or how they can be linked together. These characteristics vary

1Figure 3 shows the conceptual dependencies between xADL 2.0 schemas. Because the current
XML schema standard does not support multiple inheritance of elements, we have occasionally
needed to introduce some syntactic dependencies between schemas; however, we have attempted
to minimize or eliminate the semantic impact of these artificial dependencies. This is discussed in
detail in Section 7.3.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

208 • E. M. Dashofy et al.

Table I. xADL 2.0 Schemas and Features

Purpose Schema Features

Design-time and Run-time
Modeling

INSTANCES Run-time component, connector,
interface, and link instances;
subarchitectures, general groups.

STRUCTURE & TYPES Design-time components, connectors,
interfaces, links, subarchitectures,
general groups.

Implementation Mappings ABSTRACT IMPLEMENTATION Placeholder for implementation data
on components, connectors, and
interfaces.

JAVA IMPLEMENTATION Concrete implementation data for
Java components, connectors, and
interfaces.

Architecture Evolution
Management and

Product-Line Architectures

VERSIONS Version graphs for component,
connector, and interface types.

OPTIONS Optional design-time components,
connectors, interfaces, and links.

VARIANTS Variant design-time component and
connector types.

from ADL to ADL so they can be specified in extension schemas. Depending
on the situation and the requirements of the model, however, these generic
features can be sufficient on their own as is evidenced in our experiences with
them (see Section 6).

xADL 2.0’s core, generic features are:

(1) separation of run-time and design-time models of a software system;
(2) implementation mappings that map the ADL specification of an architec-

ture onto executable code; and
(3) the ability to model aspects of architectural evolution and product-line

architectures.

The breakdown of these high-level features into individual schemas is shown
in Table I. We discuss each schema in detail in this section. To illustrate how
these schemas are applied to describe a software system’s architecture, we will
use xADL 2.0 to describe a hypothetical software system for a consumer elec-
tronics product.

4.1 Separation of Design-Time and Run-Time Views

Traditional ADLs have viewed software architecture as a design-time artifact,
focusing their modeling capabilities on the design phase of development. How-
ever, research into run-time software evolution and dynamism has shown that
it is useful to maintain an architectural model of the system at run-time as well
[Oreizy et al. 1999; Schmerl and Garlan 2002]. The design-time and run-time
models of a system will be similar but not identical. At design time, a system
model may contain basic metadata about elements (author, size, textual de-
scriptions), specification of intended (not observed) behavior, and constraints

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 209

on the arrangements of elements. In contrast, run-time aspects of a system
that might be captured in an ADL include the physical distribution of the soft-
ware system across machines, the process ID in which each component runs, or
the current state of a particular connector (e.g., running, processing messages,
blocked).

Two schemas support the design-time/run-time separation in xADL 2.0.
These are called the Structure & Types and INSTANCES schemas, respectively.
Both schemas support the following features.

—Components: Components are the loci of computation in the architecture. In
these schemas, components are defined generically; that is, they have only a
unique identifier and a short textual description, along with a set of interfaces
(described in the following).

—Connectors: Connectors are the loci of communication in the architecture.
Similar to components, connectors also have only a unique identifier, a textual
description, and a set of interfaces.

—Interfaces: Interfaces are components’ and connectors’ portals to the outside
world; what we term “interfaces” are also known as “ports” in other ADLs.
For example, if a component implements a particular API, it would likely
contain an interface indicating that other components can make calls to that
API on the target component. In these schemas, interfaces have a unique
identifier, a textual description, and a direction (an indicator of whether the
interface is provided, required, or both). Specific interface semantics are not
specified in xADL 2.0 but in extensions, see Section 6.2 for an example of this.

—Links: Links are connections between elements that define the topology of
the architecture. In most architecture notations, links connect interfaces,
but this constraint is not mandated.

—Subarchitectures: Components and connectors may be atomic (not broken
down further at the architectural level) or composite. Composite components
and connectors have internal architectures, called subarchitectures.

—General Groups: Groups are simply collections of pointers to elements in
the architecture description. In these schemas, a group has no semantics.
Groups with specific meanings (e.g., common authorship, common platform,
similar functionality) can be specified in extension schemas.

Because the INSTANCES and STRUCTURE & TYPES schemas have definitions for
the basic architectural constructs (components, connectors, etc.), they are the
core of xADL 2.0. By maintaining definitions of these elements in both schemas,
they can be extended separately: the INSTANCES schema should be extended to
provide additional run-time data, and the STRUCTURE & TYPES schema should be
extended to provide additional design-time data. To provide traceability, XLinks
link run-time elements to their design-time counterparts.

To see how these schemas can be used to model the core of a software ar-
chitecture, consider a software system that might be used to drive a low-end
television set. Such a device might have only two software components, one to
interface with the TV tuner, and one to drive the infrared detector used to pick
up signals from the remote control. These two components are connected by a

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

210 • E. M. Dashofy et al.

Fig. 4. Diagram of an example architecture for a television accompanied by its xADL 2.0 design-
time structural description (in abbreviated, non-XML notation).

software connector that allows the infrared receiver component to send signals
to the TV tuner to change the channel. A graphical depiction of this architec-
ture, accompanied by its xADL 2.0 description (with ancillary mark up elided)
is shown in Figure 4.

4.2 Design-Time Type System

Typing is an important construct in most ADLs. xADL 2.0 incorporates the base
structures of a typing system that supports type equality and composition. In
xADL 2.0, the use of types is optional. Each component, connector, or interface

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 211

can optionally contain an XML link to a type; multiple elements can share
a type. The type serves as a construct where common properties of elements
can be specified once (in the type) instead of in each element declaration. In
the STRUCTURE & TYPES schema, these types consist of a unique identifier and
a textual description along with a set of signatures. Signatures are prescribed
interfaces; two components or connectors of the same type should have the same
types of interfaces.

To demonstrate this, we will add types to our television example. We will also
add another component to our television, a picture-in-picture tuner. Televisions
with picture-in-picture require two tuners to support the display of both chan-
nels simultaneously, but since the main tuner and the picture-in- picture tuner
are basically identical, they will share a type. The additions to our existing
architecture and its description are shown in Figure 5.

Types are also used in xADL 2.0 to support design-time subarchitectures
(that is, components or connectors that have internal architectures also speci-
fied in xADL 2.0). Thus, two components or connectors that share a type also
share an internal architecture. Specifically, types can have an optional XLink to
another ArchStructure element describing the internal architecture, as well as
a set of mappings between signatures on the type and interfaces on components
and connectors in the subarchitecture. These mappings serve to link the outer
architecture with the inner one. A full xADL 2.0 depiction of subarchitectures
is beyond the scope of this paper, but several are available on our websites, see
Section 10 for the URLs.

Some of our intended semantic constraints for types (for example, that a
component’s type link point to a component type or that interfaces match their
prescriptions as expressed in signatures) cannot be expressed directly in the
XML schemas. However, we have built checking tools and environments that
help to guide users into following and maintaining these constraints in their
own architectures. These are discussed further in Section 5.2.

4.3 Implementation Mappings

A second important feature of xADL 2.0 is its support for mapping design-
time architectural elements onto executable code. Several ADLs such as MetaH
[Binns et al. 1996] support or require a mapping between an architecture spec-
ification and its implementation. This is essential if a software system is to
be automatically instantiated from its architecture description and can help to
manage the transition from system design to implementation.

Since xADL 2.0 is not bound to a particular implementation platform or lan-
guage, it is impossible to know a priori exactly what kinds of implementations
will be used. Obvious possibilities include Java classes and archives, Windows
DLLs, UNIX shared libraries, and CORBA components [Object Management
Group 2001], but making a comprehensive list is infeasible. To address this,
xADL 2.0 adopts a two-level approach.

The first level of specification is abstract and defines where implementation
data should go in an architecture description but not what the data should
be. This indicates to future developers how to extend the xADL 2.0 schemas

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

212 • E. M. Dashofy et al.

Fig. 5. Diagram for an expanded version of the example television architecture, adding a picture-in
picture component, accompanied by additions to our earlier xADL 2.0 description.

to add data for a new implementation platform. The xADL 2.0 ABSTRACT IM-
PLEMENTATION schema extends the STRUCTURE & TYPES schema and defines a
placeholder for implementation data. This placeholder is present on compo-
nent, connector, and interface types. As such, two elements of the same type
share an implementation. The second level of specification is concrete, defining
what the implementation data is for a particular platform or programming lan-
guage. Concrete implementation schemas extend the ABSTRACT IMPLEMENTATION

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 213

Fig. 6. Expanded description of one of the television component types, adding implementation
details.

schema. xADL 2.0 includes a JAVA IMPLEMENTATION schema that concretely de-
fines a mapping from components, connectors, and interface types to Java
classes; we are currently working on additional implementation schemas for
mapping to source code as well.

With this setup, determining the concrete implementation for a given el-
ement is straight-forward. For a design-time element like a component or a
connector, the user simply follows the element’s type XLink and gets the imple-
mentation data from the type. Run-time elements like component instances and
connector instances require an additional step, following the XLink from the
run-time element to the design-time element, and then following the design-
time element’s XLink to its type.

We can add implementation data to component and connector types in our
television example, as shown in Figure 6. Here, we show that the television
tuner component is implemented by two Java classes residing in the same JAR
archive. The main class takes an initialization parameter of the television’s
model, which is useful if the component’s implementation is multipurpose or
reusable in multiple contexts (e.g., for many television models).

4.4 Modeling Architecture Evolution and Product Lines

Many first-generation ADLs focused on modeling the architecture of a sin-
gle software system or product. This is inadequate for two reasons. First,

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

214 • E. M. Dashofy et al.

architectures evolve over time. As a product evolves, so does its architecture.
Second, software products are often part of a larger product line. A product line
is a family of related software products that share significant portions of their
architectures with specific points of variation [Bosch 1999; Ommering 2002;
Tracz and Coglianese 1993]. A single product line may contain products that
are localized for specific regions or represent different feature sets for market-
ing purposes (e.g., Standard, Professional, Enterprise).

From a modeling perspective, both architectural evolution and product lines
can be addressed by applying traditional concepts from configuration manage-
ment to software architectures. Inspired by previous research in modeling ar-
chitectural product lines [Bosch 2000; Clements and Northrop 2001; Ommering
et al. 2000], xADL 2.0 integrates these concepts in the form of three schemas:
the VERSIONS, OPTIONS, and VARIANTS schemas. Versions record information about
the evolution of architectures and elements like components, connectors, and
interfaces. Options indicate points of variation in an architecture where the
structure may vary by the inclusion or exclusion of a group of elements (compo-
nents, connectors, links, and so on). Variants indicate points in an architecture
where one of several alternatives may be substituted for an element or group of
elements. We developed these three schemas to be compatible such that mod-
elers can choose to use only the VERSIONS, OPTIONS, or VARIANTS schema, or any
combination of the three.

4.4.1 Versions. The VERSIONS schema adds versioning constructs to xADL
2.0. It defines version graphs for component, connector, and interface types. In
xADL 2.0, architecture element types are the versioned entities. The decision
to version types rather than elements such as components and connectors was
made because we feel that it best matches the semantics of the type system.
For example, by versioning types, it is possible to have multiple instances of the
same version of a component, connector, or interface by simply creating multiple
instances of a type. Different versions of a component, connector, or interface
can coexist in an architecture as well simply by creating instances of type that
share a version tree. We believe this makes sense because, as architectures
evolve, newer versions of element (types) may have different characteristics
than older versions (e.g., additional signatures).

The relationship between concrete elements (e.g., components), their types,
and version graphs is depicted in Figure 7. Here, the TV Tuner Type and the
HDTV Tuner Type share a common lineage. The HDTV Tuner Type is a later
version of the TV Tuner Type, but both versions may be included in the same
architecture if necessary.

In this example, the version graph describes the evolution of a single ele-
ment. However, using the type-based subarchitecture mechanism defined in
the STRUCTURE & TYPES schema, a version graph can capture the evolution of
groups of elements or whole architectures. This is another reason why we chose
to version types.

In keeping with the generic nature of xADL 2.0 schemas, version graphs
do not constrain the relationship between different versions of individual ele-
ments, for instance, that they must share some behavioral characteristics or

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 215

Fig. 7. Relationships between concrete elements, their types, and version graphs.

interfaces. Such constraints may be specified in extension schemas and checked
with external tools.

4.4.2 Options. The OPTIONS schema allows design-time components, con-
nectors, and links to be labeled as optional in an architecture. Optional elements
are accompanied by a “guard condition” whose format can be specified in an ex-
tension. xADL 2.0 provides a default schema for guards, the BOOLEAN GUARD

schema, that allows guards to be specified as Boolean expressions similar to
those found in modern programming languages. If the guard condition is satis-
fied when evaluated, then the optional element is included in the architecture;
otherwise it is excluded.

In our television example, we may wish to turn our single product architec-
ture into a product line by adding optionality. By making the picture-in-picture
tuner optional along with its link to the TV connector, we can create a prod-
uct line that describes two products: a television with picture-in-picture and a
television without it. The changes that we must make to our existing product
description are shown in Figure 8. Here, we add an <optional> element to both
the picture-in-picture tuner and its link to the connector. The guard condition
for both <optional> elements is hasP in P == true, so these elements will only
be included in the architecture if the target product has picture-in-picture (i.e.,
the variable hasP in P is bound to the value true). Variable-value bindings are
established in a selector tool, see Section 5.2.3.

Note that it is possible to express architectures with guards that could result
in incomplete or incorrect architectures (e.g., if the link’s guard in the example

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

216 • E. M. Dashofy et al.

Fig. 8. Diagram for a television product-line where the picture-in-picture elements are optional,
accompanied by xADL 2.0 description.

above were missing or different than the guard on the P-in-P tuner). When
the product line is sculpted down to a single product via use of our selector
tool, these inconsistencies will become apparent and many of them (such as a
dangling link) will be caught by our design critics (see Section 5.2.1).

4.4.3 Variants. The VARIANTS schema allows the types of certain design-
time constructs to vary in an architecture. In particular, it defines variant com-
ponent and connector types. Variant types contain a set of possible alternatives.
Each alternative is a component or connector type accompanied by a guard con-
dition, similar to the one used in the OPTIONS schema. Guards for variants must
be mutually exclusive. When a guard condition is met, its associated component
or connector type is used in place of the variant type.

Let us diversify our television product line more by expanding it to multiple
international markets. Televisions distributed to North America or Japan will
need NTSC tuners, while televisions distributed to most of Europe will need
PAL tuners. We can express this by replacing the existing tuner type with a
variant type that links to two possible concrete types: an NTSC tuner type and
a PAL tuner type. This is shown in Figure 9. In this example, the structural
description of the architecture does not change at all: both the main and picture-
in-picture tuners retain the link to the same type (tuner type). Now, however,
their type has become variant: they may be an NTSC or PAL tuner, depending
on the situation.

5. TOOL SUPPORT

An ADL’s usefulness is closely tied to the amount of tool support available for
that ADL. Tools are needed to create architecture descriptions, to edit them, to
analyze them, to map them to system implementations, and so on. Tools can

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 217

Fig. 9. Expansion of a formerly concrete type (tuner type) into a variant type.

also help to insulate the architect from unpleasant syntactic details (such as
XML mark up and namespaces).

We partition the tools available in our infrastructure into two groups: syntax-
based and semantics-based tools. Syntax-based tools are generic, and their in-
terfaces (graphical, textual, or programmatic) are based on the syntax of the
ADL as specified in XML schemas. Because ADLs created in our infrastruc-
ture are extensible and easy to change, syntax-based tools are important since
they adapt themselves as the language evolves and changes. Semantic-based
tools make some assumptions about the meanings of particular constructs in
the constructed ADLs and may require or support the use of specific schemas.
These tools provide additional value for users of our infrastructure who adopt
some or all of the xADL 2.0 schemas and for whom the semantic assumptions
are valid. The relationships among the tools in our infrastructure are depicted
in Figure 10. Each tool in our infrastructure is described in this section.

5.1 Syntax-Based Tools

One of the advantages of using XML is its support of off-the-shelf syntax- based
tools for manipulating documents and schemas. Additionally, we have leveraged

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

218 • E. M. Dashofy et al.

Fig. 10. Relationships among tools in our infrastructure.

these off-the-shelf tools to create additional syntax-based tools specific to our
infrastructure.

5.1.1 Off-the-Shelf XML Tools: Sun’s Crimson Parser, XSV, and XML Spy.
Because ADLs created in our infrastructure are defined in XML schemas, and
because architecture descriptions are XML documents that conform to these
schemas, many off-the-shelf tools for working with XML in general are available
to users. Three such tools are particularly important as they form the basis for
all our other tools.

Sun’s Crimson parser [Apache Group 2003] is a Java implementation of the
DOM [Le Hors et al. 2003] and SAX [SAX Project 2003] APIs for parsing and ma-
nipulating XML documents. Crimson provides the ability to programmatically
access the structures in XML documents (both architecture descriptions and
schemas) at the level of XML syntactic constructs (elements, tags, attributes,
comments, etc.) This API forms the foundation for more powerful syntax-based
tools as will be described later in this section.

XSV [Thompson and Tobin 2003] is an open-source XML schema and in-
stance document validator. It provides two main functions: to verify the syn-
tactic correctness of XML schemas that are part of an ADL and to verify that
an architecture description conforms to a set of schemas. While XSV cannot

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 219

verify complex architectural properties such as type consistency, it can pro-
vide some rudimentary syntactic checking of consistency at the level of XML
constructs.

Altova’s XML Spy [Altova GmbH 2003] is a commercial development envi-
ronment for XML. XML Spy can be used to design and validate new schemas.
Most importantly, it provides a way of exploring and designing schema con-
structs graphically which is a valuable tool for schema designers to inspect and
communicate the modeling features in their schemas without having to read
the raw schemas.

The reuse of off-the-shelf XML tools is a subtle but important benefit to our
approach. While these tools do not work at the level of architectural constructs
(e.g., components and connectors), they do allow us to avoid mundane tasks
such as the creation of parsers, serializers, syntax checkers, graphical schema
editors, and so on. Our approach also benefits automatically from improvements
in these technologies: performance improvements in the underlying DOM im-
plementation translate into faster applications.

5.1.2 Data Binding Library. Off-the-shelf XML tools tend to support ma-
nipulation of documents in terms of low-level XML concepts like elements,
attributes, and text segments. Building tools that work with these low-level
constructs directly is cumbersome and error prone as it requires the tools
themselves to manage elements like namespaces directly and to ensure that
documents conform to XML schemas.

When schemas are available, a more friendly programmatic interface to XML
documents can be created based on the language prescribed by the schemas.
In our infrastructure, this interface is provided through a data binding library
[Sun Microsystems 2003a]. Our data binding library provides a set of Java
classes corresponding to elements and attributes specified in the xADL 2.0
schemas. These classes hide XML details such as namespaces, header tags,
sequence ordering, and so forth. Whereas a generic XML API like DOM ex-
poses functions like addElement(...) and getChildElements(...), classes in
our data binding library expose functions like addComponentInstance(...) and
getAllInterfaces(...). Internally, the library uses the DOM implementation
provided with Crimson to manipulate the underlying XML document. The Data
Binding Library is automatically generated by another tool in our infrastruc-
ture, Apigen, described in the next section.

Consider the following XML definition of a component, excerpted from the
xADL 2.0 STRUCTURE & TYPES Schema:

<complexType name="Component">
<sequence>
<element name="description" type="Description"/>
<element name="interface" type="Interface"

minOccurs="0" maxOccurs="unbounded"/>
<element name="type" type="XMLLink"

minOccurs="0" maxOccurs="1"/>
</sequence>

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

220 • E. M. Dashofy et al.

<attribute name="id" type="Identifier"/>
<complexType>

For this type, the data binding library includes a Java class that exposes the
following interface:

void setDescription(IDescription value);
void clearDescription();

IDescription getDescription();
void addInterface(IInterface newInterface);
void addInterfaces(Collection interfaces);
void clearInterfaces();

IInterface getInterface(String id);
Collection getInterfaces(Collection ids);
Collection getAllInterfaces();

void removeInterface(IInterface interface);
void setType(IXMLLink link);
void clearType();

IXMLLink getType();
void setId(String id);

String getId();
void clearId();

This demonstrates that, despite having no knowledge of the semantics of the
ADL, the data binding library exposes functions that are closer (in terms of their
level of abstraction) to the concepts relevant to a software architect. This makes
building architecture tools with the data binding library more intuitive than
building them with an XML tool like Crimson. Furthermore, it reduces the num-
ber of lines of code necessary to manipulate an XML-based architecture descrip-
tion significantly, by a ratio of approximately 5:1. That is, each call to the data
binding library (e.g., addInterface) encapsulates about 5 lines of DOM code.

5.1.3 Apigen. If the data binding library must be rewritten every time a
schema is added to, changed, or removed from an ADL, then the benefit of
having it is negated. Fortunately, the syntax information present in the ADL
schemas is enough to generate the data binding library automatically. We built
a tool called “Apigen” (short for API generator) [Dashofy 2001] that can au-
tomatically generate the Java data binding library, described previously, for
xADL 2.0 and extension schemas.2 When an ADL’s schemas are changed, tool
builders simply rerun Apigen over the modified set of schemas to generate a
new data binding library. Of course, bindings for elements that did not change
will remain the same, minimizing the impact on existing tools that use the li-
brary. Because of the complexity of the XML schema language, Apigen is not
a generic data binding generator it does not support the full gamut of con-
structs available in XML schemas (to our knowledge, no XML schema binding

2When we built Apigen, no adequate data binding generator existed that supported XML sce-
mas. Several promising alternatives have since emerged’ (e.g., Sun Microsystems’ JAXB [Sun
Microsystems 2003a] and XML Spy 5’s proprietary generator [Altova GmbH 2003]).

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 221

Fig. 11. Example of a data binding library call and an equivalent xArchADT message.

generator currently does). However, it supports a large set of schema features
and so far has been sufficient to generate data bindings for all the xADL 2.0
schemas as well as schemas written by third parties. A comprehensive list of
supported and nonsupported constructs in Apigen is beyond the scope of this
article but is included with the Apigen tool’s documentation.

5.1.4 xArchADT. The data binding library provides a traditional object-
oriented interface to edit architecture descriptions. This requires the library’s
callers to maintain many direct object references. In general, distributed and
event-based systems assume that components do not share an address space
and, therefore, cannot maintain object references across components. Because
of this, using such a library as an independent component in a distributed or
event-based system is difficult. To address this, we have built a wrapper, called
“xArchADT,” for the data binding library that provides an event-based inter-
face instead of an object-oriented one. Instead of procedure calls, xArchADT is
accessed via asynchronous events. An example of how a data binding library
call is expressed as an event data structure is shown in Figure 11. It uses first-
class indirect object references rather than direct pointers to refer to elements
in xADL 2.0 documents. That is, xArchADT assigns identifiers to xADL 2.0
elements, and those identifiers are used to refer to the elements. When the un-
derlying architecture description is modified by one tool, xArchADT emits an
event, informing all listening tools of the change. This gives the data binding
library the added property of loose coupling.

xArchADT, like Apigen and the data binding library, is reflective. It uses
Java’s built-in reflection capabilities to adapt to changes in the data binding
library automatically. That is, if the library is regenerated by Apigen, xArchADT
will work without modification. xArchADT’s biggest contribution to our tool
suite, however, is that it increases the range of contexts in which the data
binding library can be used. The library alone is well-suited for use in tightly-
coupled object-oriented system development, but the xArchADT wrapper gives
it an interface suitable for remote access across process boundaries (facilitated
by middleware) and inclusion in an event-based environment.

5.1.5 ArchEdit. The data binding library and xArchADT expose differ-
ent programmatic interfaces for manipulating architecture descriptions. Our

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

222 • E. M. Dashofy et al.

Fig. 12. ArchEdit Screenshot.

infrastructure also includes a syntax-driven tool with a graphical user inter-
face called “ArchEdit”. A screenshot of this tool is shown in Figure 12.

ArchEdit depicts an architecture description graphically in a tree format,
where each node can be expanded, collapsed, or edited. This is similar to many
visual XML editors except ArchEdit hides the XML details of the document from
the user. The ADL’s XML schemas direct the structure of the displayed tree view,
making the structure of the XML document and the structure of the displayed
tree identical. This gives architects direct access to architecture descriptions
without abstracting away details. ArchEdit is an event-based software com-
ponent and accesses architecture descriptions through xArchADT. Changes to
the architecture description made via xArchADT by ArchEdit or other tools are
immediately reflected in the ArchEdit user interface.

ArchEdit is another reflective tool in our infrastructure. ArchEdit is syntax-
driven: it does not understand the semantics of the displayed elements. It builds
its view and interface dynamically from the XML schemas used to define the
ADL. Therefore, it does not need to be modified when schemas are added, modi-
fied, or removed. This flexibility is valuable because it gives architects a simple
graphical editor for ADL documents automatically even if the new ADL features
have recently been added.

There are two disadvantages to ArchEdit’s reflectiveness. First, it does not
enforce stylistic constraints or other rules on the architecture description that
cannot be specified in XML. Second, ArchEdit cannot display the structure of
the software architecture in an intuitive way—as a box-and-arrow diagram, for
instance. These disadvantages are inherent in any syntax-based tool, but the
benefits of having a free editor for new ADL features outweighs these disad-
vantages. More semantically-aware editors can be built to augment ArchEdit
and integrated using xArchADT as we will show in the next section.

5.2 Semantics-Based Tools

Semantics-based tools differ from syntax-based tools in that they carry with
them some notion of the semantics of the underlying notation. This necessarily

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 223

means that the use of certain semantics-based tools will be predicated on
the inclusion of certain specific XML schemas in their target ADLs, as well
as some assumptions about semantics associated with those schemas. Unlike
syntax-based tools, semantics-based tools cannot necessarily update their in-
terfaces and behavior automatically to support new schemas. This makes ex-
tensibility a paramount concern when developing new semantics-based tools.
We have, therefore, endeavored to make our existing tools as tolerant of new
schemas as possible, for example, by ignoring unknown information rather than
failing.

In this section, we will profile three mature semantic tools that we developed
for our infrastructure: the critics framework, used for developing and integrat-
ing analysis components; Ménage, a graphical editor for architecture descrip-
tions; and the Selector, a tool for sculpting product lines down to smaller product
lines or individual products. Additionally, we will provide a brief overview at
the end of the section of current, in-progress projects we are undertaking to
build more semantic tools.

5.2.1 Critics Framework. Consistency checking and analysis tools are im-
portant parts of any ADL’s tool suite. In fact, many other ADLs were constructed
specifically for the purpose of experimenting with new analysis techniques. In
an extensible ADL, a single analysis tool is impractical. Having a modular critic
framework [Robbins and Redmiles 1998] is a preferable alternative. Critics are
software components that check properties of architecture descriptions, identify
faults and potential flaws, and report them to other components. Critics differ
from traditional analysis tools because they can update their analysis as the
document changes, allowing continual revalidation to occur. The architecture
of the critics framework, expressed in the C2 architectural style [Taylor et al.
1996], is shown in Figure 13. In the C2 style, components can make requests
of components above them, but are not allowed to make assumptions about the
components below them. As such, events requesting service are emitted up-
wards, and state changes are emitted downwards. For example, whenever the
CriticADT’s internal data store of open issues changes, it emits a notification
to all components below it.

Design critics are independent components that can be included in the frame-
work and activated if their analysis is relevant to the underlying ADL. Critics
in our framework either perform fine-grained analysis, checking only a single
property or a set of related properties, or build upon other critics to perform
more complex analyses. For example, the Link Critic checks that all link end-
points are anchored on interfaces, while the Architecture Evolution Manager
critic uses the Link Critic (and others) to decide whether the architecture de-
scription is complete enough to instantiate the specified system.

The CriticManager allows users to choose which critics to activate and de-
activate, and several artist and GUI components render open issues for exam-
ination by end users. Users can use GUI elements (in our current framework,
a “Focus Open Editors” button) to notify open architecture editors to focus on
the particular element(s) that are involved in an issue. Screenshots of sample

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

224 • E. M. Dashofy et al.

Fig. 13. Architecture of critics framework.

outputs from these critics and their visualization in the critic manager are
shown in Figure 14.

Our framework includes a growing set of critics for basic consistency checking
of xADL 2.0 documents. Current critics in our framework are listed in Table II.
The particular set of critics we have constructed to date check some of the most
common errors that can occur when defining a xADL 2.0 architecture. While
our focus thus far has been on the creation of the framework, we intend to use
this as a jumping-off point for future investigation of techniques for building
and composing critics, for example, leveraging off-the-shelf XML-based analysis
tools like xlinkit [Nentwich et al. 2002].

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 225

Fig. 14. Screenshots of critic manager and critic issues.

5.2.2 Ménage. Ménage [Garg et al. 2003] is a graphical design environ-
ment for single-product and product-line architectures. Ménage requires its
target ADL to include the STRUCTURE & TYPES, VERSIONS, OPTIONS, VARIANTS, and
BOOLEAN GUARD schemas from xADL 2.0. Ménage allows architectures to be vi-
sualized and expressed in a graph structure. Optional and variant constructs
are depicted distinctively. Optional constructs have a dotted border. Variant
components and connectors are tagged as variants; double-clicking on a vari-
ant element shows the set of possible variants. Each variant or optional element
is associated with an editable Boolean guard condition to determine whether
it is included in the architecture or not. A screenshot of Ménage is shown in
Figure 15.

Ménage works well in combination with ArchEdit and our other syntax-
directed tools. Architecture descriptions created in Ménage can be finetuned in
ArchEdit if necessary, or ArchEdit can be used to access schema elements not
supported directly by Ménage.

5.2.3 Architecture Selector. A product-line architecture represents a set of
possible product architectures. As design parameters become fixed, the number
of points of variation in a product-line architecture are reduced. When all points
of variation have been removed, the result is a single product. Our infrastruc-
ture includes a tool called the “Selector” that allows the reduction of a product
line to be done automatically for product-line architecture descriptions that use
the STRUCTURE & TYPES, OPTIONS, VARIANTS, and BOOLEAN GUARD schemas.

Recall that each optional or variant element is accompanied by a Boolean
guard expression that defines when it is included in the architecture. This

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

226 • E. M. Dashofy et al.

Table II. Critics and Their Descriptions

Critic Description

ArchStructure Critic Checks validity of ArchStructure elements.
Java Implementation Critic Checks validity of Java implementation annotations

on component, connector, and interface types.
Link Critic Checks validity of architectural links—that they have

two valid endpoints, etc.
Type Link Critic Checks to ensure that each component, connector, and

interface has a valid link to a type.
XML Link Critic Checks that XML links found in architecture

descriptions are valid.
Version Graph Critic Checks that all component, connector, and interface

types have valid links to a node in an appropriate
version graph.

Signature Critic Checks that components and connectors have the
correct number and types of interfaces as specified
by their types’ signatures.

Guard Critic Checks that all optional and variant elements are
accompanied by a guard.

Signature-Interface Mapping Critic Checks that components and connectors with
sub-architectures are properly connected to
internal components and connectors.

Interface Direction Critic Checks that the directions of connected interfaces are
compatible (‘in’ interfaces connect only to ‘out’
interfaces, etc.)

Variant Type Critic Checks that all possible variants are consistent with
their variant type.

Floating Elements Critic Checks for components and connectors not connected
to the rest of the architecture.

Duplicates Critic Checks for elements with duplicate identifiers.
Architecture Evolution Manager Critic Determines whether the architecture description

contains enough information for it to be
instantiated.

Boolean expression includes variables, just as Boolean expressions do in a pro-
gramming language, but these variables are not bound to values in the architec-
ture description. The Selector tool presents users with a graphical user interface
in which they can specify a set of values that will be bound to variables in the
Boolean expressions in the product-line architecture. Then, the user clicks a
button to start the selection process. The selector evaluates all Boolean guards
for optional and variant elements in the architecture using variable values pro-
vided by the user. For expressions that can be resolved, optional components
are either made permanent (included) or removed (excluded) and chosen vari-
ants are made permanent. For expressions that cannot be fully resolved (due to
an unbound variable, for example), the expression is reduced as far as possible,
and the element remains optional or variant. When all options and variants
have been resolved, the result is a single product architecture. If some options
and variants remain, the result is a subset of the original product line.

5.2.4 Additional Projects. In addition to those listed in this section, we
are constantly developing new semantic tools to augment our framework and

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 227

Fig. 15. Ménage screenshot.

provide more comprehensive support for the xADL 2.0 schemas. These projects
are in various states of development, and more information on all of them can
be found on our websites (see Section 10). A partial list follows:

Architecture Differencing and Merging. Tools to automatically generate doc-
uments describing the difference between two architectures, and merge the
difference documents into existing architectures [Westhuizen and Hoek 2002].
This is useful for evolution management and feature propagation.

Product-Line Differencing and Merging. The application of differencing and
merging techniques to product-line members, allowing differencing of individ-
ual members of a product line and propagation of features from one member
product to another.

Eclipse Integration. An effort to provide and maintain mappings from xADL
2.0 components to their source-code implementations in the Eclipse [Eclipse
Foundation 2004] Java development environment.

Archipelago. A second-generation graphical xADL 2.0 editor focusing on sup-
porting exploratory design and new user-interface metaphors for architecture
design. Archipelago is built on a highly-flexible plug-in framework that makes
it a good fit with an extensible language infrastructure.

Type Wrangler. A tool to assist users in making sure components and con-
nectors are matched properly to their types (e.g. interfaces match signatures,
interface types are consistent, and so on).

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

228 • E. M. Dashofy et al.

6. EXPERIENCES

Our infrastructure has been applied to problems in a number of domains. In
this section, we highlight four experiences that each demonstrate a different
strength of the infrastructure. First, we show how our infrastructure supported
the modeling and simulation of the architecture of a large military system,
demonstrating the scalability of the infrastructure. Second, we show how our
infrastructure supported the development of an ADL now used in architectural
modeling experiments for spacecraft systems, demonstrating the adaptability
of the infrastructure to new architectural domains with unique modeling re-
quirements. Third, we show how our infrastructure supported the development
of ADLs for Koala and Mae, two representations used to model product-line ar-
chitectures, demonstrating the extensibility of the XML schemas and tools in
our infrastructure. Finally, we show how the infrastructure has been used to de-
velop its own software development environment—demonstrating its ability to
describe and support itself. Two of these examples demonstrate how the xADL
2.0 schemas can already support architecture-based development on their own,
and two of them describe experiences where a new ADL was created in our in-
frastructure, leveraging our base schemas and tools. Overall, these experiences
demonstrate how the different aspects of our infrastructure (XML-based exten-
sibility, a base set of schemas, and flexible tool support) contribute to its effective
use.

6.1 AWACS

The U.S. Airborne Warning and Control System (AWACS) aircraft [Air Combat
Command Public Affairs Office 2000] is supported by a large, distributed
message-passing software architecture [Milligan 2000]. However, no formal ar-
chitectural model of this software exists. To remedy this, and to help evaluate
the scalability of our infrastructure, we modeled the architecture of the AWACS
aircraft’s software systems in xADL 2.0 and used this model as the basis for
an architecture-based simulation of AWACS. The model of AWACS was cre-
ated based on available documentation and a proprietary simulator of AWACS
component behavior provided to us by an industrial partner.

The AWACS description consists of more than 10,000 lines (almost one
megabyte) of XML. The AWACS description describes 125 components and 206
connectors, distributed across 28 processors, along with component, connec-
tor, and interface types. The description was validated against the xADL 2.0
schemas using XSV and visualized with ArchEdit. We used ArchEdit to inspect
the architecture and make further improvements until the model was accurate
and ran critics against the architecture to verify various aspects of it.

The various tools we used were relatively efficient given AWACS’ large size.
XSV can analyze an XML document of AWACS’s size in a few seconds. ArchEdit
amortizes the amount of time it takes to visualize an architecture by only read-
ing data from the DOM tree when it is viewed; expanding the most populous
node in the AWACS description for the first time takes about 5–8 seconds on a
state-of-the-art PC. The performance of critics largely depended on how much
data the critics were required to analyze. Critics that check a large portion of

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 229

Fig. 16. AWACS simulator screenshot.

the architecture (for example, the Link Critic) took about 2 seconds to check
AWACS on the PC. We believe that these times are reasonable given the size
of the architecture being checked.

Along with the initial architecture description, we developed an architecture-
based simulation of the communication among the components on the aircraft.
The simulator consists of implementations of each component and connector
type in the architecture in Java. Implementation mappings between types in
the architecture description and these Java classes were added to the architec-
ture description. A bootstrapping program reads the architecture description
into xArchADT and instantiates and links the components and connectors au-
tomatically. To visualize the simulation, a separate project created an extension
to Microsoft Visio that can render a xADL 2.0 architecture as a graph of com-
ponents, connectors, and links [Ren and Taylor 2003]. Messages sent among
AWACS components and connectors are animated on this graph. A screenshot
of this simulator is shown in Figure 16.

Beyond scalability, our experience with AWACS demonstrates several addi-
tional positive characteristics of our infrastructure. First, it shows that our base
schemas have effective modeling capabilities by themselves as no extensions
were needed to model the AWACS architecture. Second, it shows the flexibility
of the infrastructure’s tool support as we were able to use xArchADT (and, by

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

230 • E. M. Dashofy et al.

extension, our data binding library) to create the architecture description and
use it as the basis for our simulator. Finally, it shows the value of the COTS
and user-interface based tools in our infrastructure as we were able to use XSV
to validate our description and ArchEdit to refine it.

6.2 JPL

As a demonstration of the adaptability of the infrastructure to a new domain
with its own unique architectural requirements, we describe our experience
with NASA’s Jet Propulsion Laboratory (JPL). JPL develops software systems
for space probes and ground systems. This domain induces unique modeling
needs; specifically, these architectures are modeled as state-based systems. To
accommodate these modeling constraints, JPL’s Mission Data Systems group
[Rouquette and Reinholtz 2002] and their research partners at the University
of Southern California (USC) created extensions to xADL 2.0 [Roshandel et al.
2004]. While the specific contents of these schemas cannot be shared due to
their proprietary and confidential nature, they are roughly characterized as
follows:

Static Behavior Schema. This schema extends the core xADL 2.0 schemas
to capture static behavioral properties of the system. These behaviors add pre-
conditions, postconditions, and invariants to xADL 2.0 component types, using
a set of variables also defined in the extension. Additionally, xADL 2.0 signa-
tures are extended with input and output parameters, allowing them to specify
programming-language-like functions.

MDS Types Schema. This schema extends the static behavior schema to
capture namespaces and complex inheritance information for components.

MDS Implementation Schema. This schema links architectural artifacts to
implementation-level counterparts as expressed in the JPL-proprietary MDS
framework. It is used primarily for code generation.

JPL integrated their extended version of xADL 2.0 into their development
process by creating translators to and from existing notations such as UML and
proprietary text-based notations. They also adopted our tools to visualize and
manipulate architecture descriptions. Additionally, researchers at USC used
the extended version of xADL 2.0 to model the architecture of the SCrover, a
mobile robot based on JPL’s MDS framework. They modified an existing archi-
tecture analysis tool, DRADEL [Medvidovic et al. 1999], to use JPL-extended
xADL descriptions rather than its own proprietary models and used DRADEL
to analyze the SCrover architecture. The DRADEL analysis found 21 errors in
the SCrover architecture, 6 of which were not also detected by a peer review
process. The ultimate aim of these efforts is to use xADL 2.0 as part of a large-
scale effort to foster model-driven code generation. Additionally, the success
of this effort recently prompted JPL to enter into a second project leveraging
our infrastructure, this time focusing on space mission modeling and systems
architecture.

This experience verifies that our infrastructure’s genericity and its exten-
sibility mechanisms are useful in previously unexplored domains, especially
with regard to the xADL 2.0 base schemas. JPL was able to reuse the xADL 2.0

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 231

base schemas, creating relatively small new schemas to model domain-specific
details of spacecraft software. JPL’s use of Apigen and the associated data bind-
ing library to manipulate architecture descriptions further shows the value of
our infrastructure’s tool support. Finally, their mapping of architecture descrip-
tions to other representations shows the adaptability of our approach to other,
nonpreplanned situations.

6.3 Mappings to Koala and Mae

To demonstrate our infrastructure’s ability to capture concepts from an emerg-
ing research area and add tool support for those concepts efficiently, we created
schemas that add the unique modeling constructs of Koala and Mae to our
base xADL 2.0 schemas. Koala [Ommering et al. 2000] and Mae [Hoek et al.
2001] are two representation formats for capturing product-line architectures.
As described earlier in Section 4.4, the xADL 2.0 schemas already provide basic
support for product-line architectures with the VERSIONS, OPTIONS, and VARIANTS

schemas. However, both Koala and Mae have unique modeling characteristics
that differ from those in the xADL 2.0 schemas and from each other.

There are several differences between Koala and xADL 2.0. First, Koala
does not support the notion of explicit connectors or versioning. Next, Koala
has two constructs not present in xADL 2.0: diversity interfaces and switches.
A diversity interface, representing a point of variation in an architecture, is
required to be present on variant components and must be an “out” interface.
A switch is an explicit construct applied at a variation point that creates the
connection to the variant component that will be used.

The Mae representation is somewhat closer to xADL 2.0. Two key differences
exist between xADL 2.0 and Mae. First, component types in Mae are augmented
with a string describing their architectural style. Second, component types in
Mae also have a subtype relation and a reference to their supertype. We ad-
dressed these differences by extending the definition of a component type with
a new schema.

xADL 2.0’s flexibility at the level of individual elements was useful several
times. For instance, Koala lacks support for explicit connectors, so we sim-
ply excluded connectors from our ADL since xADL 2.0 does not require them,
demonstrating the modularity of the xADL 2.0 schemas at the level of indi-
vidual elements. When new constructs were required, like Koala’s diversity
interfaces and Mae’s subtypes, we created simple schemas that added these
entities to xADL 2.0. This experience further demonstrates the effectiveness of
the XML-based extensibility mechanism we have chosen for our infrastructure.

Consider the schema shown in Figure 17 used to add Koala-style diversity
interfaces to xADL 2.0. This schema subtypes the definition of an interface to
create a diversity interface and extends the definition of a component to add
such an interface. Note the relative simplicity of this schema; other schemas,
shown in full in [Dashofy and Hoek 2001], are also simple and straightforward.

For the Koala and Mae mappings, we successfully exercised the full gamut
of XML schema-based extensibility techniques (creation of new elements, ex-
tension of existing elements, restriction of elements, etc.) This experience also

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

232 • E. M. Dashofy et al.

Fig. 17. xADL 2.0 extension schema for Koala-style diversity interfaces.

reinforces the effectiveness of the infrastructure tools. We used XML Spy to
verify and create our extension schemas and Apigen to create a new data bind-
ing library that supports them. ArchEdit was able to support these schemas
automatically. As such, after writing the short extension schemas required to
map Koala and Mae into our infrastructure, our tools provided parsing, syntax
checking, and GUI editing abilities automatically.

6.4 ArchStudio 3

Finally, we have used our infrastructure to support its own development and
evolution. As discussed above, our infrastructure includes a number of inter-
acting tools that manipulate, analyze, and otherwise work with architecture
descriptions. Most of these tools rely on a basic set of services for interacting
with architecture descriptions (parse, read, modify, save) that are provided by
the xArchADT component. Some tools rely on the services provided by other
tools; for example, Ménage relies on design critics to perform consistency check-
ing of architecture descriptions before it manipulates them. We have created

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 233

an architecture-based development environment called ArchStudio 3 that in-
tegrates most of our tools as components [Institute for Software Research].
Like the AWACS simulator, ArchStudio’s architecture is described in xADL
2.0. ArchStudio’s bootstrapper reads the xADL 2.0 description of ArchStudio
and instantiates and connects all the components and connectors.

ArchStudio 3’s toolset currently includes xArchADT, the critics framework
(and all critics), ArchEdit, Ménage, Selector, and many other tools. It is com-
prised of approximately 80,000 lines of Java code, not including code generated
by Apigen. Our experience in building, maintaining, and evolving ArchStudio
3 demonstrates that our infrastructure can support a nontrivial product’s de-
velopment and design and is capable of describing and supporting itself.

7. LESSONS LEARNED

In building and evolving our infrastructure, we learned several important
lessons about modular architecture description language development, both
in general and in the specific context of our XML-based infrastructure.

7.1 Guidance for Developing Modular ADL Features

As we have stated, our infrastructure does not attempt to automatically resolve
the feature interaction problem [Zave 1999] in ADL development. That is, it
does not provide tool support for ensuring semantic compatibility among ADL
features. Nonetheless, in an infrastructure such as ours, feature interactions
must be resolved in creating new ADL modules. We gained significant experi-
ence in solving feature interactions and preventing future difficulties when we
developed the xADL 2.0 schemas and worked with our partners to extend the
language further for specific domains. Our insights about developing new ADL
features, some of which reflects conventional wisdom, are summarized here.

Separate core concepts from details. In developing ADL modules, concepts
are more important than the specific implementation of those concepts. For
example, our ABSTRACT IMPLEMENTATION schema captures the concept of an im-
plementation mapping and indicates where such data should go but does not
specify the details of what data should be included. Concrete schemas like the
JAVA IMPLEMENTATION schema perform that function. Similarly, the STRUCTURE &
TYPES schema defines the core architecture elements (components, connectors,
interfaces, and links) but leaves out details to be specified in extensions.

Keep the dependency tree shallow. Every time a semantic dependency is intro-
duced between schemas, it means that adopters of the dependent schemas must
also implicitly adopt the parent schemas. Sometimes this is desirable: the xADL
2.0 type system provides a convenient place to specify variants. However, by
maintaining compatibility without dependencies among the OPTIONS, VARIANTS,
and VERSIONS schemas, we ease the adoption of these schemas individually.

Build domain-specific features atop generic ones. Each additional schema
must be carefully compared semantically with all other schemas in the target
ADL to determine compatibility. To maximize reusability of schemas, it is better
to build and incorporate domain-generic schemas (schemas whose features are
useful across many domains) first, and then build domain-specific schemas.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

234 • E. M. Dashofy et al.

For example, we built features like product-line support and implementation
mappings into xADL 2.0 first. Because the domain-generic schemas are not
dependent on domain-specific ones, they can be more easily ported to other
projects or ADLs because they will not require the porting or adoption of more
specific schemas.

Eliminate redundancy where possible. Data that must be specified or copied
in multiple places puts an undue burden on the tools that support the ADL
to maintain consistency between the copies. Eliminating or minimizing redun-
dancy can reduce this burden. In the xADL 2.0 schemas, types are provided as a
way to keep common data about similar components, connectors, and interfaces
in a single place.

Use first-class data elements instead of decorating existing elements. While
it is natural to extend the definition of existing elements with additional data,
it is often better in terms of extensibility to model the data as a set of first-
class entities and provide links from the existing elements to the data. For
example, rather than including version data and links among related versions
inside component and connector types, we instead created first-class version
trees and linked types to nodes in the tree. This allows for partial specifications
(indicating that a version exists without necessarily having a fully-defined type
to represent it). This also helps to disentangle version data and information
from other elements that do decorate types such as information about variants.
Finally, using first class elements allows many entities to link to the same
information, helping to minimize redundancy.

Beyond these general guidelines, it is difficult to offer insight into the best
way to integrate any given new feature. In the end, only experience can bear
out whether a particular feature was integrated well or poorly. For example,
we believe that our modularization of xADL 2.0 is a relatively good and man-
ageable separation of concerns. We cannot credibly assert that our breakdown
of features is best, or that there is no refactoring of the schemas that would
lead to a more elegant, extensible, or modular notation. Nonetheless, our expe-
riences using the notation increase our confidence that our modularization is
an effective one.

Our infrastructure offers some means to alleviate this difficulty. First, it
encourages experimentation with new refactorings and changes to existing no-
tations more easily than a monolithic language would. So, while it cannot guide
users in how to best integrate a new feature, it can at least help them to exper-
iment with different alternatives. Second, it encourages the dissemination and
reuse of existing feature integrations as we have done with xADL 2.0. xADL
2.0 carries with it the engineering knowledge and experiences we (and others)
have had in integrating many useful features; the ability to reuse this particular
well-worn modularization of features is far preferable to reinventing it.

7.2 The Usefulness of Syntax-Based and Other Reflective Tools

In the continual development of an extensible language, or any language that
changes over time, the importance of reflective and syntax-based tools cannot
be underestimated. Experience has shown that, in the absence of a reasonable

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 235

method to extend a language and its tool support, extensions will usually ap-
pear in the form of hacks [Luckham et al. 1987; Sun Microsystems 2003b].
For programming languages, extensions usually come in the form of specially-
formatted comments, misusing this feature of the language simply because it is
ignored by existing language tools like compilers and environments. For other
design notations such as UML [Booch et al. 1998], existing concepts are over-
loaded to support new features to avoid extending the language definition and
tools. Sometimes, when new features are too different from an existing lan-
guage to be integrated, users will attempt to use multiple notations in tandem,
or worse, develop an entirely new, competing notation. Reflective tools allow
language elements to be extended and new first-class elements to be added to
a language without resorting to hacks or excessive overloading.

Our experiences with our infrastructure, described in Section 6, have demon-
strated that the availability of syntax-based and reflective tools like Apigen,
xArchADT, and ArchEdit help make extending an existing notation and its tools
tolerable. They provide the ability to experiment with new modeling features
before taking on an extended investment in building and adapting semantics-
based tools. They encourage users to extend the notation in a rational, prin-
cipled way instead of hacking it. When extensions are eventually supported
by more powerful, semantics-based tools, the syntax-based tools can assume a
secondary role and augment the semantics-based tools.

7.3 XML Schemas as a Basis for Extensible Language Development

We have been relatively pleased with XML schemas, as they provide an ex-
pressive but not overly-complex metalanguage supported by a significant set
of off-the-shelf tools that freed us from having to write parsers, serializers, and
syntax checkers. For us, the most problematic restriction of XML schemas is
that they only allow single inheritance of data types for elements and attributes,
that is, a subtype can have only a single supertype. Therefore, subtypes that
mix the content model of several supertypes are not permitted in XML schema-
based languages. Several alternative metalanguages exist that alleviate this
difficulty such as XInterfaces [Nölle 2002] and RDF [Lassila and Swick 1999],
but none has the support from available tools and standards committees of
XML schemas. In our experience, the benefits of XML schemas outweigh the
severity of the single-inheritance limitation.

To examine how single inheritance affects the development of modeling lan-
guages for software, consider a base type “Component” that describes a software
component. Now, consider two independent extensions to Component. Feature
1 adds implementation information to the component’s description to describe
how it is implemented in a particular programming language. Feature 2 adds
administrative data to the component’s description to describe who is respon-
sible for the component, and who has worked on it in the past. This situation
is depicted in Figure 18. Semantically, neither feature depends on the other.
Therefore, it should ideally be possible to model a plain component, a com-
ponent with implementation details, a component with administrative details,
and a component with both implementation and administrative details. In XML

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

236 • E. M. Dashofy et al.

Fig. 18. Depiction of multiple inheritance issue in XML schemas and potential solutions.

schemas, there are several ways to accomplish this. First, it would be possible
to create individual, independent types for each of the four variants of a com-
ponent. This works, but it causes a combinatorial explosion of types as new,
orthogonal features proliferate. Also, it breaks expected type relationships (a
component-with-administrative-details is not a subtype of component).

A preferable solution is to introduce an artificial dependency be-
tween the two extensions. For example, component-with-administrative-
and-implementation-details extends component-with-implementation-details
which, in turn, extends component. To accommodate components that have
implementation details only, administrative details are made optional in the
extension. This preserves expected type relationships (a component-with-
administrative-and-implementation-details is-a component) and is able to
model all four kinds of components.

A final alternative is to use substitution groups and abstract base types for
extensions. This is analogous to adding a list of void* to each object class in
C++ or a vector of objects to the end of each object class in Java. This does
not adequately preserve type relationships and weakens the ability to validate
architecture documents via XML type checking.

Artificial dependencies are an imperfect solution but are workable and do
not suffer from combinatorial explosion. If and when the W3C decides to add
multiple-inheritance support to XML schemas in the future, schemas and in-
stance documents that use artificial dependencies should be fairly easy to
refactor.

8. RELATED WORK

The notion of an extensible architecture description language is not new, nor is
our infrastructure the first to support XML-based architecture descriptions.
However, our approach provides the first modular architecture description

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 237

language with useful generic features broken down into modules and accompa-
nied by a process and tools that explicitly support new language extensions.

Our approach has been inspired by several other research areas. First, there
is a large body of work on extensible and modular languages spanning three
decades which continues today in projects like ArchJava, AspectJ, and LXWB.
Second, many meta and generic modeling environments have emerged that
technically could support many of the syntactic capabilities of our XML-based
infrastructure. Third, previous ADL research has yielded XML-based ADLs
such as ADML and xADL 1.0, two first-generation ADLs with limited extensi-
bility. Finally, it is important to compare our approach with that of the Unified
Modeling Language (UML) which has been touted as an architecture descrip-
tion language.

8.1 Extensible and Modular Language Research

The 1970s spawned significant research into extensible programming lan-
guages [Christensen and Shaw 1969]. These programming languages allowed
additions to their syntax, usually through new BNF production rules, and to
their semantics, through semantic modules at run-time.

Programming languages continue to be extended today. ArchJava [Aldrich
et al. 2002] extends a programming language with architectural constructs
and semantics such as components and connectors. AspectJ [Lopes et al. 1997]
allows cross-cutting concerns to be specified for Java programs that are “woven”
into existing Java classes. In these cases, the semantic capabilities provided by
the tools could be achieved in the target programming language (Java) without
language extensions. However, the amount of (largely manual) work to do so
would be prohibitively difficult. ArchJava provides a compact way to specify and
check constraints on Java programs that would be nearly impossible to check by
hand for a system of any significant size. AspectJ adds significant value to Java
by providing a single place where widely distributed concerns can be specified;
previously, implementing such cross-cutting concerns would be done by copy-
and-paste coding or ad hoc preprocessors. The difference between these tools
and simple preprocessors is that tools like ArchJava and AspectJ add (and
check) semantics beyond those available in the target language (here, Java) but
conveniently output Java bytecode for compatibility with the existing run-time
environment. More complex semantics (e.g., the addition of concurrency to a
programming language that lacks it) may require more significant modification
to the language and tools.

Other research has focused on modular domain-specific languages. The Lan-
guage eXtension Work Bench (LXWB) [Peake et al. 2000] was developed in the
mid-1990s to allow for modular language description using BNF-like produc-
tion rules. The LXWB allows language modules to be defined and automatically
generates parsers and other tools for compositions of modules much like our
infrastructure. In fact, the extensibility aspects of the metalanguage supported
by LXWB are very similar to those found in XML schemas. LXWB’s metalan-
guage defines a type system over language elements and uses inheritance to
extend existing constructs.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

238 • E. M. Dashofy et al.

8.2 Meta and Generic Modeling Environments

As an alternative implementation route for our research contributions, we
could have chosen any one of a number of alternative metamodeling languages
and environments. Examples of these environments include Lisp [Steele 1990],
DOME [Honeywell Inc. 1999] and GME [Ledeczi et al. 2000].

Lisp has been proposed as an alternative to using XML since XML’s inception.
In particular, the argument has been made that Lisp s-expressions are a better
way of encoding hierarchical data than XML [Cunningham & Cunningham Inc.
2004] and that incorporation of additional Lisp elements could mean building
semantics and semantic checks directly into the language itself.

DOME, the Domain Modeling Environment, is a tool for creating environ-
ments for model-based software engineering. DOME allows users to define vi-
sual grammars and then develop models which are instances of those gram-
mars. The packaged version of DOME has special support for modeling in
several popular modeling notations such as Coad-Yourdon Object Oriented
Analysis and Data Flow diagrams. The ability for DOME users to create their
own graphical grammars is roughly on par with editing the MOF specification
for UML. Code can be added in DOME-specific languages (called Projector and
Alter) to analyze models in user-defined grammars.

GME, the Generic Modeling Environment, is similar to DOME. Like DOME,
users can edit a graphical metamodel and later create instances of that
model. Like XML schemas, GME uses a types-and-instances paradigm: meta-
models are types, and models are instances of those types. Both GME and
DOME support notions of inheritance at the metamodel level, DOME sup-
porting single inheritance of nodes and GME supporting virtual multiple
inheritance.

All these environments are effectively viable alternatives to XML and XML
schemas, offering different advantages and disadvantages, particularly in
terms of the capabilities the off-the-shelf tools can provide such as vendor sup-
port, and so on. We do not assert that our specific choice and use of XML as the
metamodeling environment for our infrastructure is a research contribution
per se (though we did learn several valuable lessons about creating modular
languages in XML such as those described in Section 7.3); rather, our research
contributions come in the form of the particular decomposition of ADL features
found in xADL 2.0, insights about how to create and compose ADL modules,
and the roles of different kinds of tools in supporting modular ADL development
and use.

8.3 Domain-Specific Software Architectures

Domain-specific ADLs and Domain Specific Software Architectures (DSSAs)
[Coglianese 1992; Tracz and Coglianese 1992; Tracz 1996] are tangentially re-
lated to our infrastructure. Because of the amount of domain knowledge infused
in a DSSA and its associated modeling language, a measure of compactness and
reuse is possible that is not present in traditional, all-purpose ADLs. Because
of the modularity of our infrastructure and the ability to make arbitrary exten-
sions to ADLs, our infrastructure is ideal for constructing and experimenting

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 239

with domain-specific architecture description languages. Additionally, product-
line architecture modeling techniques supported in our infrastructure provide
intuitive ways of specifying points of variation in a reference architecture.

8.4 Other XML-Based ADLs

Early XML-based ADLs explored the possibility of encoding software archi-
tecture descriptions in XML but did not leverage its extensibility. Examples
include xADL 1.0 [Khare 2001] and ADML [Spencer 2000]. xADL 1.0 is an in-
tellectual predecessor of xADL 2.0 and included novel features for an ADL such
as the ability to specify run-time change and detailed interface specifications.
xADL 1.0’s syntax was defined in a DTD and, therefore, it was extensible via
XML namespaces, but its tools did not support extensibility. Moreover, its set
of supported features was much smaller than xADL 2.0’s.

ADML is basically an XML translation of the Acme core, also defined
in a DTD. ADML improved marginally on Acme by introducing a notion of
metaproperties and property types but also failed to leverage XML’s extensi-
bility. In fact, ADML still uses name-value pair properties as its extensibility
mechanism with the names and values simply encoded in XML. Our approach is
the first to leverage XML’s extensibility mechanisms fully and does not require
the creation or use of a proprietary metalanguage such as ADML’s metaprop-
erties. Beyond better extensibility, our existing support for features such
as product-line architectures and implementation mappings exceeds ADML’s
capabilities.

8.5 Relationship to UML

The Unified Modeling Language [Booch et al. 1998] is an effort to create a
standard, generic, graphical modeling language for software systems. There
is some amount of disagreement on whether UML is an ADL or not [Booch
et al. 1999; Robbins et al. 1997]. From our perspective, UML 1.x can be used as
an ADL but it must be extended to some degree to model the core constructs
of software architecture such as components and connectors. To address this
deficiency, UML 2.0 added a new diagram type called a composite structure
diagram. Composite structure diagrams include notions of parts, connectors,
ports, and links which map onto xADL 2.0 components, connectors, interfaces,
and links, respectively.

Our approach improves on the UML approach in two significant ways:
features and extensibility. With respect to features, xADL 2.0’s type system
and product-line support represent abilities not present in UML, including
UML 2.0.

More importantly, our infrastructure’s extensibility mechanisms and ability
to add features like these are far more flexible than UML’s. UML has two levels
of extensibility: built-in extensibility mechanisms (stereotypes, tagged values,
and constraints) and MOF editing. UML’s built-in mechanisms allow UML to
be extended through overloading of existing constructs. That is, an existing
construct like a UML class or part can be stereotyped to serve as a software
architecture component or component type. This approach has been used in

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

240 • E. M. Dashofy et al.

several efforts to adapt UML into an ADL [Hofmeister et al. 1999; Robbins
et al. 1997]. Overloading can become problematic if constructs are needed that
do not naturally fit one of the existing UML diagram types. For example, con-
sider a construct like xADL 2.0’s version graphs. It would be possible to create
a graph of nodes using an existing UML diagram type like a class diagram,
but the intent of the class diagram is to show relationships between software
artifacts in the design of a system rather than track the evolution of a compo-
nent over time. An alternative to using the built-in extensibility mechanisms is
to redefine UML in its own metalanguage, the metaobject framework (MOF).
This allows arbitrary extensibility, but the resulting language is not UML, and,
therefore, UML tools will generally not support this new language. In contrast,
our approach provides extensibility analogous to editing at the MOF level but
provides tools that expect and support this level of extensibility.

UML’s relationship to XML is maintained through the XMI format, an XML-
based interchange format in which UML diagrams can be saved and loaded.
XMI eases interoperability among UML tools by providing them a common
text-based lingua franca (UML’s graphical format does not have a standard
method of serialization), but does not contribute to UML’s modeling capabilities
or extensibility.

9. CONCLUSIONS AND FUTURE WORK

This article describes both research and technical contributions. Research con-
tributions include the first decomposition of an architecture description lan-
guage into modules, insights about how to develop new language modules and
a process for integrating them, and insights about the roles of different kinds of
tools in a modular ADL-based infrastructure. This is accompanied by the tech-
nical contribution of a viable infrastructure for creating and extending XML-
based architecture description languages. The infrastructure dramatically re-
duces the amount of effort involved in experimenting with and developing new
architectural concepts. This reduction results from the three parts of our infras-
tructure: an XML-based extensibility mechanism, a set of generic base schemas,
and a set of flexible tools. It provides critical tools like parsers, editors, syntax
checkers, and data bindings for ADLs, allowing developers to spend more time
on building high-value tools that focus on addressing open issues.

We believe that our infrastructure has fulfilled all the goals set forth in
Section 3. Table III recalls these goals and describes the specific infrastructure
mechanisms used to meet the goals.

Additionally, the experiences that we and others have had in applying our
approach have indicated many positive qualitative aspects of the approach.
We have demonstrated the scalability of our infrastructure and the flexibility
of our tools by modeling and simulating the AWACS software architecture.
The adaptability of our infrastructure to a new, previously unexplored domain
(spacecraft software) and the effectiveness of our generic xADL 2.0 schemas
have been demonstrated by work done at JPL. We have demonstrated that our
infrastructure can be used to capture aspects of an emerging research area
(product-line architectures) with Koala [Ommering et al. 2000] and Mae [Hoek

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 241

Table III. Goals Achieved by Our Infrastructure

Goal Infrastructure Characteristics

Place as few limits on what can be
expressed at the architecture level
as possible.

Our XML-based extension mechanism allows users
to define arbitrary new constructs and extend any
existing construct. Our experiences with JPL and
the Koala/MAE extensions confirm the
effectiveness of this mechanism.

Allow new modeling features to be
added and existing features to be
modified over time.

Allow experimentation with new
features and combinations of
features.

New ADLs can be created simply by composing a set
of schemas.

Provide tool-builders with support for
creating and manipulating
architecture models, even when the
underlying notation can and will
change.

Our syntax-based tools provide instant parsers, data
bindings, and editors for new schemas
automatically with no new code; our semantic
tools and environments are componentized and
relatively easy to extend, as confirmed by the
integration of DRADEL into our environment.

Provide a library of generically useful
modules applicable to a wide variety
of domains.

The xADL 2.0 schemas are these modules. Some or
all of these schemas were reused in each of our
evaluation efforts.

Allow modeling features, once defined,
to be reused in other projects.

Along with the reuse of the xADL 2.0 schemas, the
MDS extension schemas developed by JPL have
been used in both code-generation and
architecture analysis efforts.

et al. 2001]. Our infrastructure supports its own development and evolution
within the ArchStudio 3 design environment.

In the future, we plan to experiment with integrating more tools into our
infrastructure via the ArchStudio 3 environment to add useful features. Some
of these are described in Section 5.2.4. Beyond these, we believe the xlinkit tool
[Nentwich et al. 2002] can potentially be used to express and check constraints
on XML links in xADL 2.0 documents. Also, the SmartTools toolset [Attali
et al. 2001] can potentially provide an XML-based language like xADL 2.0 with
alternative editors and semantic analysis tools.

For our longterm research goals, we plan to expand the xADL 2.0 schemas
to include new modeling constructs, particularly those that will support the
specification of distributed and dynamic architectures. We also want to inves-
tigate the application of our existing tools to new problems. For example, we
believe that our product-line tools can be applied to support architectural trade-
off specification and analysis, where product variants represent points in the
space of available trade-offs instead of actual product descriptions.

10. ONLINE RESOURCES

For more information about xADL 2.0, please see http://www.isr.uci.edu/
projects/xarchuci/.

For more information about the ArchStudio 3 suite of tools, please see http://
www.isr.uci.edu/projects/archstudio/.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

242 • E. M. Dashofy et al.

ACKNOWLEDGMENTS

The authors would first like to acknowledge and thank the anonymous re-
viewers for their invaluable insights about this article which greatly as-
sisted us in shaping and scoping this work and its presentation. We would
also like to thank Ping Chen, Tina Cheng, Matthew Critchlow, Rob Egelink,
Justin Erenkrantz, Joachim “Joe” Feise, Akash Garg, John Georgas, Scott
Hendrickson, Fei Hoffman, Jesse Hsia, Arick Ma, Roshni Malani, Kari Nies,
Jie Ren, Jane Tran, and Christopher Van der Westhuizen for their valuable
contributions to ArchStudio 3 and the other xADL 2.0 tools. Additionally, we
would like to thank the researchers and practitioners who contributed sig-
nificantly to our evaluation efforts, especially Will Tracz, Nicolas Rouquette,
Vanessa Carson, Peter Shames, Neno Medvidovic and Roshanak Roshandel.

REFERENCES

APACHE GROUP. 2003. Crimson. Available at <http://xml.apache.org/crimson/>.
AIR COMBAT COMMAND PUBLIC AFFAIRS OFFICE. 2000. Fact Sheet: E-3 Sentry (AWACS). U.S. Air

Force (July). Available at <http://www.af.mil/news/factsheets/E 3 Sentry AWACS .html>.
ALDRICH, J., CHAMBERS, C., AND NOTKIN, D. 2002. ArchJava: Connecting software architecture to

implementation. In Proceedings of the 24th International Conference on Software Engineering.
(Orlando, FL.) ACM, 187–197.

ALLEN, R. AND GARLAN, D. 1997. A formal basis for architectural connection. ACM Trans. Softw.
Eng. Method. 6, 3 (July), 213–249. Available at <http://doi.acm.org/10.1145/258077.258078>.

ALTHEIM, M., BOUMPHREY, F., DOOLEY, S., MCCARRON, S., SCHNITZENBAUMER, S., AND WUGOFSKI, T. 2001.
Modularization of XHTML. World Wide Web Consortium, W3C Recommendation Report (April).
Available at <http://www.w3.org/TR/ xhtml-modularization/>.

Altova GmbH. 2003. XML spy website. Available at <http://www.xmlspy.com/>.
ATTALI, I., COURBIS, C., DEGENNE, P., FAU, A., PARIGOT, D., AND PASQUIER, C. 2001. SmartTools: A

generator of interactive environments tools. In Proceedings of the the International Conference
on Compiler Construction (CC’01) (April). Genova, Italy.

BERNERS-LEE, T. AND CONNOLLY, D. 1998. Web architecture: Extensible languages. W3C Note
Report (Feb.) 10. Available at <http://www.w3.org/TR/NOTE-webarch-extlang>.

BINNS, P., ENGLEHART, M., JACKSON, M., AND VESTAL, S. 1996. Domain-specific software architectures
for guidance, navigation and control. Int. J. Softw. Eng. Knowl. Eng. 6, 2 (June), 201–227.

BOOCH, G., RUMBAUGH, J., AND JACOBSON, I. 1998. The Unified Modeling Language User Guide.
Object Technology Series. Addison Wesley, Reading, MA.

BOOCH, G., GARLAN, D., IYENGAR, S., KOBRYN, C., AND STAVRIDOU, V. 1999. Is UML an archi-
tectural description language? Available at <http://www.acm.org/sigplan/oopsla/oopsla99/2 ap/
tech/2d1a uml.html>. (OOPSLA ’99).

BOSCH, J. 1999. Product-line architectures in industry: A case study. In Proceedings of the 21st
International Conference on Software Engineering. IEEE Computer Society Press. Los Angeles,
CA. 544–554.

BOSCH, J. 2000. Design and Use of Software Architectures: Adopting and Evolving a Product-Line
Approach. Wesley, A. Ed. ACM Press.

BRAY, T., PAOLI, J., AND SPERBERG-MCQUEEN, C. M. 1998. Extensible markup language (XML):
Part I. Syntax. World Wide Web Consortium, Recommendation Report (Feb.). Available at <http://
www.w3.org/TR/1998/REC-xml>.

CHRISTENSEN, C. AND SHAW, C. 1969. Proceedings of the Extensible Languages Symposium. Boston,
MA.

CLARK, J. AND DEROSE, S. 1999. XML path language (XPath) version 1.0. World Wide Web Consor-
tium, W3C Recommendation Report REC-xpath-19991116 (Nov.). Available at <http://www.w3.
org/TR/xpath>.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 243

CLEMENTS, P. AND NORTHROP, L. 2001. Software Product Lines—Practices and Patterns. Pearson
Education, (Addison-Wesley).

COGLIANESE, L., SMITH, R., AND TRACZ, W. 1992. DSSA case study: Navigation, guidance, and flight
director design and development. In Proceedings of the IEEE Symposium on Computer-Aided
Control System Design. (March), 102–109.

CUNNINGHAM & CUNNINGHAM, INS. 2004. Xml isa poor copy of ess expressions. Available at <http://
c2.com/cgi/wiki?XmlIsaPoorCopyOfEssExpressions>.

DASHOFY, E. M. 2001. Issues in generating data bindings for an XML schema-based language.
In Proceedings of the Workshop on XML Technologies in Software Engineering (XSE’01) (May).
Toronto, Canada.

DASHOFY, E. M. AND HOEK, A. V. D. 2001. Representing product family architectures in an extensi-
ble architecture description language. In Proceedings of the International Workshop on Product
Family Engineering (PFE-4) (Oct.), 330–341.

DASHOFY, E. M., HOEK, A. V. D., AND TAYLOR, R. N. 2001. A highly-extensible, XML-based archi-
tecture description language. In Proceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA’01) (Aug.). Amsterdam, The Netherlands.

DEROSE, S., MALER, E., AND ORCHARD, D. 2001. XML linking language (XLink) version 1.0. World
Wide Web Consortium, W3C Recommendation Report (June). Available at <http://www.w3.
org/TR/xlink/>.

Eclipse Foundation. 2004. Eclipse. Available at <http://www.eclipse.org/>.
FALLSIDE, D. C. 2001. XML schema part 0: Primer. World Wide Web Consortium, W3C Recom-

mendation Report (May). Available at <http://www.w3.org/TR/xmlschema-0/>.
GARG, A., CRITCHLOW, M., CHEN, P., VAN DER WESTHUIZEN, C., AND HOEK, A. V .D. 2003. An environ-

ment for managing evolving product line architectures. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’03) (Sept.). Amsterdam, The Netherlands.

GARLAN, D., MONROE, R. T., AND WILE, D. 2000. ACME: Architectural description of component-
based systems. In Foundations of Component-Based Systems, Leavens, G.T. and Sitaraman, M.
Eds. Cambridge University Press, 47–48.

GORLICK, M. M. AND RAZOUK, R. R. 1991. Using weaves for software construction and analysis. In
Proceedings of the 13th International Conference on Software Engineering. (May), 23–34.

HOARE, C. A. R. 1978. Communicating sequential processes. Comm. ACM. 21, 8 (Aug.), 666–
677.

HOEK, A. V. D., MIKIC-RAKIC, M., ROSHANDEL, R., AND MEDVIDOVIC, N. 2001. Taming architectural
evolution. In Proceedings of the 6th European Software Engineering Conference (ESEC) and the
9th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-9) (Sept.).
Vienna, Austria. 10–14.

HOFMEISTER, C., NORD, R. L., AND SONI, D. 1999. Describing software architecture with UML.
In Proceedings of the 1st IFIP Working Conference on Software Architecture. (Feb.). San
Antonio, TX. Available at <http://citeseer.nj.nec.com/cache/papers/cs/15435/;http:zSzzSzwww.
scr.siemens.comzSzpdfzSzUsingUML-unix.pdf/;hofmeister99describing.pdf>.

HONEYWELL INC. 1999. DOME Guide.
INSTITUTE FOR SOFTWARE RESEARCH. ArchStudio, an architecture-based development environment.

University of California, Irvine. Available at <http://www.isr.uci.edu/projects/archstudio/>.
KHARE, R., GUNTERSDORFER, M., OREIZY, P., MEDVIDOVIC, N., AND TAYLOR, R. N. 2001. xADL: En-

abling architecture-centric tool integration with XML. In Proceedings of the 34th International
Conference on System Sciences (HICSS-34), Software mini-track (Jan.). Maui, Hawaii.

LASSILA, O. AND SWICK, R. 1999. Resource Description Framework (RDF) Model and Syntax
Specification. World Wide Web Consortium, W3C Recommendation Report (Feb.). Available at
<http://www.w3.org/TR/REC-rdf-syntax/>.

LE HORS, A., LE HÉGARET, P., WOOD, L., NICOL, G., ROBIE, J., CHAMPION, M., AND BYRNE, S. 2003.
Document object model (DOM) level 3 core specification. World Wide Web Consortium, W3C
Working Draft Report (June). Available at <http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-
20030609/>.

LEDECZI, A., MAROTI, M., BAKAY, A., KARSAI, G., GARRETT, J., THOMASON, C., NORDSTROM, G., SPRINKLE,
J., AND VOLGYESI, P. 2000. The generic modeling environment. Vanderbilt University, 6. Tech.
Rep. Available at <http://www.isis.vanderbilt.edu/Projects/gme/GME2000Overview.pdf>.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

244 • E. M. Dashofy et al.

LOPES, C. V., KICZALES, G., MENDHEKAR, A., MAEDA, C., LOINGTIER, J.-M., AND IRWIN, J. 1997. Aspect-
oriented programming. In Proceedings of the European Conference on Object-Oriented Program-
ming. Finland.

LUCKHAM, D. C., HENKE, F. W. V., KRIEG-BRÜCKNER, B., AND OWE, O. 1987. Anna—A Language for
Annotating Ada Programs. Springer-Verlag, 260.

LUCKHAM, D. C., KENNEY, J. J., AUGUSTIN, L. M., VERA, J., BRYAN, D., AND MANN, W. 1995. Specification
and analysis of system architecture using rapide. IEEE Trans. Softw. Eng. 21, 4 (April), 336–355.
Available at <http://citeseer.nj.nec.com/luckham95specification.html>.

MAGEE, J., DULAY, N., EISENBACH, S., AND KRAMER, J. 1995. Specifying distributed software ar-
chitectures. In Proceedings of the 5th European Software Engineering Conference (ESEC’95).
Springer-Verlag, Berlin. 137–153. Available at <http://citeseer.nj.nec.com/rd/0ftp:zSzzSzdse.
doc.ic.ac.ukzSzdse-paperszSzdarwinzSzesec.pdf/magee94specifying.pdf>.

MEDVIDOVIC, N., ROSENBLUM, D. S., AND TAYLOR, R. N. 1999. A language and environment for
architecture-based software development and evolution. In Proceedings of the 21st International
Conference on Software Engineering (ICSE ’99) (May). IEEE Computer Society. Los Angeles, CA.
44–53. Available at <http:// www.ics.uci.edu/∼dsr/old-home-page/icse99-dradel.pdf>.

MEDVIDOVIC, N. AND TAYLOR, R. N. 2000. A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26, 1 (Jan.), 70–93. Reprinted
in Rational Developer Network: Seminal Papers on Software Architecture. Rational Software
Corporation. Available at <http://www.rational.net/>.

MEHTA, N. R., MEDVIDOVIC, N., AND PHADKE, S. 2000. Towards a taxonomy of software connectors.
In Proceedings of the 2000 International Conference on Software Engineering (June). Limer-
ick, Ireland. 178–187. Available at <http://sunset.usc.edu/classes/cs599 2000/Conn-ICSE2000.
pdf>.

MILLIGAN, M. K. J. 2000. Implementing COTS open systems technology on AWACS. CrossTalk: J.
Defense Softw. Eng. (Sept.). Available at <http://www.stsc.hill.af.mil/crosstalk/2000/09/milligan.
html>.

NENTWICH, C., CAPRA, L., EMMERICH, W., AND FINKELSTEIN, A. 2002. Xlinkit: A consistency checking
and smart link generation service. ACM Trans. Internet Tech. 2, 2 (May), 151–185. Available at
<http://www.systemwire.com/whitepapers/xlinkit.pdf>.

NÖLLE, O. 2002. XInterfaces: A new schema language for XML. BS Thesis. Institute for Computer
Science, University of Freiburg. Available at <http://www.onoelle.de/xinterfaces/thesishtml/
index.html>.

OBJECT MANAGEMENT GROUP. 2001. The Common Object Request Broker: Architecture and Spec-
ification.

OMMERING, R. V., LINDEN, F. V. D., KRAMER, J., AND MAGEE, J. 2000. The Koala component model for
consumer electronics software. IEEE Comput. 33, 3 (March), 78–85.

OMMERING, R. V. 2002. Building product populations with software components. In Proceedings
of the 24th International Conference on Software Engineering. 255–265.

OREIZY, P., GORLICK, M. M., TAYLOR, R. N., HEIMBIGNER, D., JOHNSON, G., MEDVIDOVIC, N., QUILICI,
A., ROSENBLUM, D. S., AND WOLF, A. L. 1999. An architecture-based approach to self-adaptive
software. IEEE Intell. Syst. 14, 3 (May-June), 54–62.

PEAKE, I. AND SALZMAN, E. 1997. Support for modular parsing in software reengineering. In Pro-
ceedings of the Conference on Software Technology and Engineering Practice’97 (July) London,
UK. 58–66.

PEAKE, I. 2000. LXWB User’s Guide. Centre for Software Maintenance. Queensland.
PERRY, D. E. AND WOLF, A. L. 1992. Foundations for the study of software architecture.

ACM SIGSOFT Soft. Eng. Notes. 17, 4 (Oct.), 40–52. Available at <http://citeseer.nj.nec.com/
perry92foundation.html>.

REN, J. AND TAYLOR, R. N. 2003. Visualizing software architecture with off-the-shelf components.
In Proceedings of the 15th International Conference on Software Engineering and Knowledge
Engineering (July) San Francisco, CA. 132–141.

ROBBINS, J., REDMILES, D., AND ROSENBLUM, D. 1997. Integrating C2 with the unified mod-
eling language. In Proceedings of the California Software Symposium (CSS’97) (Nov.).
Irvine, CA. 11–18. Available at <ftp.ics.uci.edu/pub/eden/papers/conferences/1997/css/CSS97.
pdf>.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

Development of Modular Software Architecture Description Languages • 245

ROBBINS, J. AND REDMILES, D. 1998. Software architecture critics in the Argo design environment.
In Proceedings of the International Conference on Intelligent User Interfaces (UIST’98) (Jan.) San
Francisco, CA. 47–60.

ROSHANDEL, R., SCHMERL, B., MEDVIDOVIC, N., GARLAN, D., AND ZHANG, D. 2004. Understanding
tradeoffs among different architectural modeling approaches. In Proceedings of the 4th Working
IEEE/IFIP Conference on Software Architecture (WICSA’04) (June) Oslo, Norway.

ROUQUETTE, N. AND REINHOLTZ, K. 2002. The mission data system’s software architecture frame-
work. International Conference on Software Engineering (ICSE’02). Orlando, FL. Available at
<http://www-scf.usc.edu/∼csci577/teams/team12a/MDS/mds sw arch framework.ppt>.

SAX PROJECT. 2003. SAX: Simple API for XML. Available at <http://www.saxproject.org/>.
SCHMERL, B. AND GARLAN, D. 2002. Exploiting architectural design knowledge to support self-

repairing systems. In Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering. (July), 241–248. Ischia, Italy. Available at <http://portal.acm.org/
citation.cfm?id=568804>.

SPENCER, J. 2000. Architecture description markup language (ADML): Creating an open mar-
ket for IT architecture tools. The Open Group, White Paper Report (Sept.). Available at
<http://www.opengroup.org/tech/architecture/adml/ background.htm>.

STEELE, G. 1990. Common Lisp: the Language. 2nd Ed., Digital Press, Woburn, MA.
SUN MICROSYSTEMS. 2003a. Java architecture for XML binding (JAXB). Available at <http://java.

sun.com/xml/jaxb/>.
SUN MICROSYSTEMS. 2003. Javadoc tool home page. Available at <http://java.sun.com/j2se/

javadoc/>.
SZYPERSKI, C. 1997. Component Software: Beyond Object-Oriented Programming. ACM Press,

New York, NY.
TAYLOR, R. N., MEDVIDOVIC, N., ANDERSON, K. M. E., JAMES WHITEHEAD, J., ROBBINS, J. E., NIES, K. A.,

OREIZY, P., AND DUBROW, D. L. 1996. A component- and message-based architectural style for
GUI software. IEEE Trans. Softw. Eng. 22, 6 (June), 390–406.

THOMPSON, H. S. AND TOBIN, R. 2003. Current status of XSV. Tech. Rep. University of Edinburgh
(July). Available at <http://www.ltg.ed.ac.uk/∼ht/xsv-status.html>.

TRACZ, W. AND COGLIANESE, L. 1992. A case for domain-specific software architectures. In Proceed-
ings of the WISR-5.

TRACZ, W. AND COGLIANESE, L. 1993. An adaptable software architecture for integrated avionics.
In Proceedings of the IEEE National Aerospace and Electronics Conference. (May), 1161–1168.

TRACZ, W. 1996. Domain-specific software architectures, frequently asked questions. Tech. Rep.
Loral Federal Systems Company.

WESTHUIZEN, C. V. D. AND HOEK, A. V. D. 2002. Understanding and propagating architectural
change. In Proceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA
3) (Aug.). Montreal, Canada.

ZAVE, P. 1999. FAQ sheet on feature interaction. Available at <http://www.research.att.com/∼
pamela/faq.html>, AT&T, HTML.

Received August 2003; revised July 2004; accepted October 2004

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 2, April 2005.

