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ABSTRACT 
Research and experimentation in software architectures over the 
past decade have yielded a plethora of software architecture de-
scription languages (ADLs). Continuing innovation indicates that 
it is reasonable to expect more new ADLs, or at least ADL fea-
tures. This research process is impeded by the difficulty and cost 
associated with developing new notations. An architect in need of 
a unique set of modeling features must either develop a new archi-
tecture description language from scratch or undertake the daunt-
ing task of modifying an existing language. In either case, it is 
unavoidable that a significant effort will be expended in building 
or adapting tools to support the language. To remedy this situa-
tion, we have developed an infrastructure for the rapid develop-
ment of new architecture description languages. Key aspects of 
the infrastructure are its XML-based modular extension mecha-
nism, its base set of reusable and customizable architectural mod-
eling constructs, and its equally important set of flexible support 
tools. This paper introduces the infrastructure and demonstrates 
its value in the context of several real-world applications. 

1. INTRODUCTION 
Software architectures [35] provide a way to reason about soft-
ware systems at a level of abstraction above that of simple mod-
ules, objects or lines-of-code. To model systems at this level, 
architects must have expressive modeling languages and tools to 
manipulate models expressed in those languages.  

The traditional way to represent a software architecture is to 
model it in an architecture description language (ADL). Many 
ADLs have been developed by both the research- and practice-
oriented communities. A comprehensive survey of architecture 
description languages [29] reveals that most ADLs share a set of 
fundamental modeling constructs and concepts, including compo-
nents, connectors, interfaces, and architectural configurations. 
ADLs are distinguished from one another by a small number of 
features, supported by tools, that have evolved from various areas 
of interest or need.  

ADL research is still an active area, making it unlikely that a sin-
gle, unified ADL will soon emerge. We can expect a continuing 

proliferation of new ADLs and ADL features for several reasons.  
First, the software architecture community continues to identify 
and experiment with new ADL features and combinations thereof. 
This is natural, given that different domains have widely different 
areas of concern, and depending on the purpose of the architec-
tural model, certain constructs may or may not be appropriate or 
useful. Next, the software architecture community does not agree 
on what features should be present in an ADL, or precisely what 
these features should model [29].  

Given the continuing succession of innovations from the research 
community, it would be useful to have an infrastructure with 
which to quickly construct new ADLs. Furthermore, it should be 
possible to do so efficiently by combining compatible features 
together and extending/modifying existing features. Architects 
thus develop new ADLs by writing their own grammars in meta-
languages of their choosing and building their own parsers, syntax 
checkers, and support tools. 

In an effort to address this situation, we have developed an infra-
structure for the rapid development of XML-based [9] ADLs. Our 
infrastructure provides: 

1. an XML-based modular extension mechanism for rapidly de-
veloping new ADLs; 

2. a base set of features that can be reused in ADL develop-
ment; and 

3. a flexible set of tools to support ADL development and use. 

Using this infrastructure, architects can efficiently and effectively 
create new ADLs and modify or extend ADLs created in the infra-
structure. This results in a significant overall reduction in effort.  

Tool support is especially vital for the successful use of any ADL 
because architecture descriptions persist throughout the product 
development lifecycle and evolve along with the described soft-
ware system. Tools are required to create, manipulate, and main-
tain these documents over time. Our infrastructure provides ge-
neric tools valuable to ADL developers like parsers, syntax 
checkers, and syntax directed editors for architecture descriptions. 
These tools can serve as the basis for more advanced tools that 
exploit new ADL features. 

It is important to note that neither XML nor our infrastructure 
attempts to enforce semantic consistency within an ADL. The 
infrastructure is merely a way to define and manipulate represen-
tations of software architectures; interpreting the representations, 
or constraining how they may be manipulated, is the job of exter-
nal tools. As such, issues such as resolving feature interaction 
problems and enforcing internal consistency of the model are not 
addressed. For instance, developers experimenting with modeling 
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new aspects of software systems may use our infrastructure to 
temporarily specify redundant or conflicting features in their 
ADLs if they so desire. Investigating the semantic relationships 
between ADL features is an open research area, and our infra-
structure can serve as the basis for tools and languages that sup-
port this research. 

Our infrastructure has been used in several projects, within our 
research group, by industrial practitioners, and by other research-
ers. These experiences confirm the effectiveness of different as-
pects of our infrastructure. We demonstrate that our infrastructure 
is scalable by modeling and simulating a large military system. 
We show the value of our infrastructure’s adaptable and extensi-
ble aspects and tool support in experiments modeling spacecraft 
software architectures. Finally, we demonstrate the infrastruc-
ture’s ability to capture concepts from different representations of 
an emerging domain (product line architectures). This experience 
also shows our infrastructure’s ability to add tool support for new 
constructs quickly. 

The rest of this paper is organized as follows: Section 2 provides a 
background on ADL research to date, Section 3 describes our 
approach and infrastructure in detail, Section 4 shows the benefits 
of our infrastructure in the context of experiences in several do-
mains, and Section 5 describes related work and how our ap-
proach compares to that work. The final section summarizes our 
conclusions and describes our future work. 

2. BACKGROUND 
Architecture description languages are formal notations “provid-
ing features for modeling a software system’s conceptual architec-
ture, distinguished from the system’s implementation. ADLs pro-
vide both a concrete syntax and a conceptual framework for char-
acterizing architectures” [29]. These notations are typically sup-
ported by tools that facilitate understanding, visualizing, analyz-
ing, instantiating, and simulating architecture descriptions. Repre-
sentative ADLs include Darwin [26], Wright [1], Rapide [25], 
MetaH [6], C2SADEL [28], and Koala [32]. As Medvidovic and 
Taylor [29] point out, the minimum requirement for a language to 

be an ADL is the ability to represent components, connectors, 
architectural configurations, and interfaces. Each language listed 
here has this ability. Additionally, each language listed here con-
tains distinguishing features that model aspects of software sys-
tems in new or unique ways (see Table 1). 

The wide variety of ADL features corresponds to the equally wide 
variety of capabilities desired by architects. One way to differenti-
ate ADLs is by what kinds of architectures they can model. Some 
ADLs are very generic, like Darwin and Wright, while others are 
better suited to specific domains or architectural styles: Rapide 
specifically supports event-based architectures; C2SADEL was 
built to model architectures in the multi-level notify/request C2 
style [41]; MetaH was built to model embedded systems, includ-
ing both hardware and software components. Another way to 
differentiate ADLs is by what features of software systems they 
model. Koala, for instance, models product lines by modeling 
variation points in an architecture. C2SADEL and Darwin are 
both capable of modeling properties of dynamic architectures—
those that change at run-time—although they do so in different 
ways.  

New research issues continue to emerge from the architecture 
community.  Areas of interest include distributed architectures 
[26], dynamic architectures. [34], integrating architectures with 
software deployment and maintenance [16], and product line ar-
chitectures [11]. Research in areas such as these indicates that it is 
reasonable to expect new ADLs, or at least ADL features, from 
the software architecture community. This exemplifies the need 
for our infrastructure, which reduces the cost of creating and 
modifying ADLs, experimenting with new features, and building 
associated tools. 

3. APPROACH 
To date, many ADLs have been monolithic. Their feature sets and 
grammar are fixed, and adding new constructs to a monolithic 
ADL is not possible without modifications to the tool set support-
ing that ADL. The cost of extending and adapting such an ADL 
and its tools is significant, and may be comparable to developing 
a new ADL from scratch. 

We approach this problem by developing a modularly extensible 
architecture description language. In this approach, sets of related 
features are defined in individual modules. These modules can 
define new modeling constructs and extend constructs in other 
modules. New ADLs are formed by composing modules together. 

The idea of an extensible language is not new. Extensible pro-
gramming languages have been investigated for several decades 
[10][40]. The results of this research have been adapted to support 
extensible languages for representing data as well. Examples of 
such languages are SGML [20], RDF [23], and XML [9]. Among 
these, XML has several extrinsic benefits not shared by the others: 
XML has broad support from standards bodies (most notably the 
W3C), researchers, and practitioners, along with a large and grow-
ing set of support tools. This gives any XML-based language a 
head-start in terms of compatibility and tool support. Addition-
ally, the new XML Schema standard [42], discussed below, pro-
vides a meta-language suitable for developing modular and exten-
sible notations. Recognizing these factors, and based on our pre-
vious successes building ADLs using XML [21], we have built 
our infrastructure to support modularly extensible ADLs that are 
defined in XML schemas and manipulated using tools. 

ADL Distinguishing Features 

Darwin Ability to model distributed, dynamic systems; 
operation model described in pi-calculus. 

Wright Explicit connectors with checkable formal seman-
tics. 

Rapide Event-based architectures specified using partially-
ordered sets of events (POSETS); simulation tools 
to check interactions of event-based component 
behaviors. 

MetaH Specification of how software modules interact 
with hardware, real-time and concurrent state ma-
chine aspects. 

C2SADL Multiple, heterogeneous, subtyping mechanisms; 
varying levels of type conformance. Ability to 
model architecture changes imperatively. 

Koala Ability to model product line architectures with 
optional and variant elements. 

 

Table 1. Representative ADLs and distinguishing features. 



Using XML’s ability to create modularly extensible ADLs is only 
the first part of our approach. A base set of generic schemas and 
flexible tool support are equally important parts of our infrastruc-
ture. It is our strong belief that all three are needed for this infra-
structure to be effective. We discuss details of each part of our 
infrastructure below.  

3.1 XML Schemas and Extensiblity 
The first part of our infrastructure is its adoption of XML schemas 
and their extensibility mechanisms to define modularly extensible 
ADLs. Since its inception, XML has provided capabilities for 
defining modular, extensible languages. XML’s original meta-
language, the document type definition (DTD) [9], can be used for 
this purpose, as is evidenced by the Modularization of XHTML 
W3C effort [2]. However, using DTDs to create modular lan-
guages introduces a specific problem: each combination of mod-
ules requires a new “hybrid DTD” to describe the resulting lan-
guage. A hybrid DTD is a separate document that describes how 
the modules are connected to create a new language; creating and 
maintaining this document introduces additional overhead into the 
process of creating a modular language. 

The XML Schema standard, recently ratified as a W3C recom-
mendation, describes a more expressive meta-language for XML 
that is superior to DTDs in a number of ways. First, whereas 
DTDs use a style of tags and declarations separate from XML 
documents, XML schemas resemble XML documents. More im-
portantly, XML schemas add a type system to XML. This in-
cludes basic types like integers and strings that define the contents 
of atomic elements and attributes. Complex types are also al-
lowed, in which elements contain other elements and attributes. In 
this type system, types can be extended in a manner similar to 
object-oriented subtyping: types can be extended to add new in-
formation, in the form of elements or attributes, without modify-
ing the base type’s definition. An additional advantage of XML 
subtyping over object-oriented subtyping lies in type restrictions: 
elements and attributes can be removed or restricted in an ex-
tended type. 

XML schemas provide the meta-language with which modularly 
extensible architecture description languages are created in our 
infrastructure. Each schema is one module. Types defined in a 
schema may describe new first-class constructs, or add/remove 
elements from a base type defined in another schema. Architects 
can create a new ADL, then, by choosing an appropriate set of 
schemas. They may create these schemas on their own, or they 
may reuse and adapt schemas written by other architects. 

XML does not solve all the problems of creating a modularly 
extensible language. First of all, it does not guarantee syntactic 
compatibility among modules. This is mostly due to the fact that 
the current version of the XML schema standard does not support 
multiple type inheritance. As such, two subtypes that extend the 
same base type cannot be combined in a single element. This can 
be resolved by introducing artificial dependencies—making one 
subtype an extension of the other, even though they may be con-
ceptually orthogonal. We have done this successfully with our 
own schemas, as described in the next section. The W3C is con-
sidering multiple inheritance for inclusion in a future version of 
XML schemas, which would alleviate this problem.  

Second, XML is just syntax. It cannot describe the semantics of 
individual elements or relationships among elements. Therefore, 

semantics must be checked and enforced with external semanti-
cally-aware tools. This is not different from traditional language 
development. 

3.2 xADL 2.0 
The second part of our infrastructure is a set of reusable schemas 
that can be used as the basis for developing new ADLs, collec-
tively known as xADL 2.0 [12]. To maximize the reusability and 
applicability of these schemas, we have endeavored to make them 
as generic as possible. For instance, our schemas define compo-
nents and connectors, but not their behaviors or how they can be 
linked together. These aspects are an important part of many 
ADLs, and we have designed the xADL 2.0 schemas so such as-
pects can be specified in extension schemas. 

xADL 2.0 provides constructs that are useful for describing soft-
ware architectures in general, as well as three important features 
that can be used in an ADL derived from xADL 2.0. These are: 

1. separation of run-time and design-time models of a software 
system; 

2. implementation mappings that map the ADL specification of 
an architecture onto executable code; and 

3. the ability to model aspects of architectural evolution and 
product line architectures. 

The breakdown of these high-level features into individual sche-
mas is shown in Table 2. We discuss each schema in detail below. 

3.2.1 Separation of Run-Time and Design-Time 
Models 
Traditionally, ADLs have focused on design-time aspects of a 
software system or have combined run-time and design time as-
pects in a single model. However, research on dynamic software 
architectures [22][34] has revealed that it is useful to provide a 
separate architectural model of a software system at run-time. 
Run-time models capture aspects of a running software system 
that are different from aspects captured at design-time. For in-
stance, a design-time model of a system might contain information 
such as: basic metadata about elements (e.g., authors, sizes, tex-
tual descriptions), expected behavior of components and connec-
tors, and constraints on the arrangements of components and con-
nectors. In contrast, a run-time model of the same system might 
contain information such as the current state of a component or 
connector (e.g., ‘not started,’ ‘running,’ ‘suspended,’ ‘blocked,’ 
‘error state’), where a component is running in a distributed sys-
tem (e.g., which machine, what processor, its process ID), and its 
communication status (e.g., events or calls waiting to be proc-
essed, a history of recently processed requests). 

In xADL 2.0, two schemas accomplish the separation of run-time 
and design-time models. Constructs modeling run-time aspects of 
a system are defined in the INSTANCES schema, also known as 
“xArch,” which we defined in collaboration with researchers at 
Carnegie Mellon University. The INSTANCES schema defines the 
core set of architectural constructs common to most ADLs. The 
INSTANCES schema provides definitions of: 

• component instances; 
• connector instances; 
• interface instances (on components and connectors);   
• link instances; 



• subarchitectures (composite components and connectors with 
internal architectures); and 

• general groups. 

Constructs modeling design-time aspects of a system are defined 
in another schema, the STRUCTURE & TYPES schema. This schema 
provides definitions of: 

• components; 
• connectors; 
• interfaces (on components and connectors);   
• links; 
• subarchitectures (composite components and connectors with 

internal architectures);  
• general groups; 
• component types; 
• connector types; and 
• interface types. 

In addition to providing a structural model of the system at de-
sign-time, the STRUCTURE & TYPES schema also includes a generic 
type system for architectural elements. Types can be assigned to 
components, connectors, and interfaces, allowing an architect to 
reason about similarities among elements of the same type. 

Providing separate models for run-time and design-time aspects of 
the system ensures that they can be extended separately. While the 
models are similar, independent extensions to each schema can be 

created to model additional aspects of a running system or a sys-
tem design.  

In keeping with the nature of xADL 2.0, the constructs defined in 
the INSTANCES and STRUCTURE & TYPES schemas are highly ge-
neric. Thus, aspects of elements like behaviors and constraints on 
how elements may be arranged are not specified. Such aspects are 
meant to be defined in extension schemas. 

3.2.2 Implementation Mappings 
A second important feature of xADL 2.0 is its support for map-
ping an architecture design onto executable code. Several ADLs 
such as MetaH support or require a mapping between an architec-
ture specification and its implementation. This is essential if a 
software system is to be automatically instantiated from its archi-
tecture description. 

Since xADL 2.0 is not bound to a particular implementation plat-
form or language, it is impossible to know, a priori, exactly what 
kinds of implementations will be mapped to architecture descrip-
tions. Obvious possibilities include Java classes and archives, 
Windows DLLs, UNIX shared libraries, and CORBA compo-
nents, but making a comprehensive list is infeasible.  

To address this, xADL 2.0 adopts a two-level approach. The first 
level of specification is abstract, and defines where implementa-
tion data should go in an architecture description, but not what the 
data should be. The xADL 2.0 ABSTRACT IMPLEMENTATION 
schema extends the STRUCTURE & TYPES schema, and defines a 
placeholder for implementation data. This placeholder is present 
on component, connector, and interface types. As such, two ele-
ments of the same type share an implementation. The second level 
of specification is concrete, defining what the implementation 
data is for a particular platform or programming language. Con-
crete implementation schemas extend the ABSTRACT 

IMPLEMENTATION schema. xADL 2.0 includes a JAVA 

IMPLEMENTATION schema that concretely defines a mapping from 
components, connectors, and interface types to Java classes. 

3.2.3 Modeling Architectural Evolution and Product 
Line Architectures 
Modeling architectural evolution and product lines are emerging, 
but important research areas. Initial work in both these areas has 
focused on applying configuration management concepts to archi-
tectures [17][18]. Thus, from a modeling perspective, both areas 
can be addressed by adding configuration management concepts 
to an ADL. 

The three most important aspects of modeling the evolution of 
architectures and product lines are versions, options, and variants. 
Versions record information about the evolution of architectures 
and elements like components, connectors, and interfaces. Op-
tions indicate points of variation in an architecture where the 
structure may vary by the inclusion or exclusion of an element or 
group of elements. Variants indicate points in an architecture 
where one of several alternatives may be substituted for an ele-
ment or group of elements. xADL 2.0 supports versions, options, 
and variants, each in a separate schema. 

Purpose Schema Features 

Instances 

Run-time component, 
connector, interface, and 
link instances; subarchi-
tectures; general groups. 

Design-time 
and Run-time 

Models 
Structure & 

Types 

Design-time components, 
connectors, interfaces, 
and links; subarchitec-
tures; general groups; 
component, connector, 

and interface types. 

Abstract 
Implementation 

Placeholder for imple-
mentation data for com-
ponents, connectors, and 

interfaces. Implementation 
Mappings 

Java 
Implementation 

Concrete implementation 
data for Java-language 

components, connectors, 
and interfaces 

Versions 
Version graphs for com-
ponent, connector, and 

interface types. 

Options 
Optional design-time 

components, connectors, 
and links. 

Architectural 
Evolution 

Management / 
Product Line 
Architectures 

Variants 
Variant design-time com-

ponent and connector 
types. 

 

 

Table 2.  xADL 2.0 schemas and features. 



Versions 

The VERSIONS schema adds versioning constructs to xADL 2.0. In 
xADL 2.0, architecture element types are the versioned entities 
[12]. The VERSIONS schema defines version graphs for compo-
nent, connector, and interface types.  

These version graphs capture the evolution of individual elements 
in an architecture, and, using the subarchitectures mechanism 
defined in the STRUCTURE & TTYPES schema, can capture the evo-
lution of groups of elements or whole architectures. In keeping 
with generic nature of xADL 2.0 schemas, they do not constrain 
the relationship between different versions of individual ele-
ments—that they must share some behavioral characteristics or 
interfaces, for instance. Such constraints may be specified in ex-
tension schemas and checked with external tools.  

Options 

The OPTIONS schema allows certain design-time constructs to be 
labeled as optional in an architecture. It defines optional compo-
nents, connectors, and links. 

Optional elements are accompanied by a “guard condition.” This 
condition, whose format can be specified in an extension, is 
evaluated when the architecture is instantiated. If the condition is 
met, then the optional element is included in the architecture; 
otherwise it is excluded. 

Variants 

The VARIANTS schema allows the types of certain design-time 
constructs to vary in an architecture. In particular, it defines vari-
ant component and connector types. 

Variant types contain a set of possible alternatives. Each alterna-
tive is a component or connector type accompanied by a guard 
condition, similar to the one used in the OPTIONS schema. Guards 
for variants are assumed to be mutually exclusive. The guard con-
ditions are evaluated when the architecture is instantiated. When a 
guard condition is met, its associated component or connector 
type is used in place of the variant type. 

3.2.4 Modularity and Incrementality of the xADL 2.0 
Schemas 
Some of the xADL 2.0 schemas extend constructs defined in other 
schemas. This introduces dependencies between them. The con-

ceptual dependencies of the various xADL 2.0 schemas are shown 
in Figure 1. We have attempted to minimize these dependencies 
when possible. For instance, while the VERSIONS, OPTIONS, and 
VARIANTS schemas are all dependent on the STRUCTURE & TYPES 
schema, they are not dependent on one another. Thus, it is possi-
ble to have an architecture description that has options and vari-
ants, but not versions.  

As mentioned earlier, one drawback of using XML schemas is 
that additional artificial dependencies need to be introduced to 
resolve conflicts when two extensions are applied to the same 
base type. We minimized the effect of this in the xADL 2.0 sche-
mas [12]. 

We have also made the schemas modular and incremental at the 
level of individual constructs within the schemas. Where possible, 
we have made individual elements optional. For instance, some 
ADLs [26][32] do not use explicit connectors. While xADL 2.0 
supports them, they are not required in a xADL 2.0-based archi-
tecture specification. The xADL 2.0 schemas do not constrain 
what kinds of elements may be connected, so links can connect 
components directly if needed. This finer-grained modularity 
makes the xADL 2.0 schemas even more generic and useful as the 
basis for a wide range of ADLs. 

3.3 Tool Support 
The third part of our infrastructure is its extensive set of flexible 
tools. Tools in our infrastructure provide parsing, syntax check-
ing, and syntax-directed editing based on ADL schemas. These 
tools are syntax-driven, and provide the basis for tools that per-
form semantic functions—analysis, simulation, instantiation, test-
ing, etc. Interpreting the elements defined by the XML schemas 
and enforcing semantic constraints or relationships between those 
elements is out of the scope of our tools.  

Using XML as the basis for ADLs makes tool support especially 
important. While XML documents are plain ASCII and can be 
written by hand and read visually, the amount of markup and 
namespace data usually present in an XML document makes it 
difficult to do so. This increases the need for APIs, editors, and 
viewers for documents that hide unnecessary XML details. 

Each of the tools in our infrastructure is described in detail here. 
A diagram showing the various tools and the relationships among 
them is shown in Figure 2.  

3.3.1 COTS and Open-Source XML Tools 
One of the key benefits of using XML as the basis for new ADLs  
is the abundance of commercial-off-the-shelf (COTS) and open-
source tools available for manipulating XML documents. These 
XML tools provide the most basic level of support for editing 
architecture descriptions. Two such tools that play an important 
part in our framework are XML Spy [3], and Apache Xerces [4]. 

XML Spy 

XML Spy is an integrated development environment for XML. It 
has extensive support for both DTDs and XML schemas, and 
provides an editor and validator for XML documents and sche-
mas. As an XML tool, it exposes many details about XML to its 
users, limiting its effectiveness as an editor for architecture de-
scriptions. However, it has proven useful as an XML schema edi-
tor and validator. We used XML Spy extensively in our develop-
ment of the xADL 2.0 schemas. We expect that other users of our 

Figure 1. Conceptual dependencies of xADL 2.0 schemas. 
Child nodes are dependent on their parents. 
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infrastructure will find this tool, and other XML editors like it, 
useful in developing schemas as well. 

Apache Xerces 

Apache Xerces is an open-source programmatic library for pars-
ing and manipulating XML documents. It implements an XML 
parser and validator, as well as the W3C-defined APIs SAX [30] 
and DOM [24]. While we do not expect users of our infrastructure 
to interact with Xerces directly, it is an important part of many of 
the tools in our infrastructure because it allows our tools to inter-
act with XML documents programmatically. Without it, we would 
have had to create our own XML parser and APIs, increasing our 
effort substantially. 

3.3.2 Data Binding Library 
Our infrastructure includes a library of Java-to-XML data bind-
ings [8] that exposes an object-oriented, programmatic interface. 
This interface hides nearly all details of XML from the user. Us-
ing these data bindings significantly reduces the amount of effort 
needed to build a tool that can parse, understand, and manipulate 
architecture documents. 

Once a description of an ADL (in the form of XML schemas) is 
available, syntax-directed tools can be used to create and edit 
XML architecture descriptions. Syntax-directed tools hide most 
XML details from their users. They use the constructs defined by 
the XML schemas to direct the manipulation of documents and 
help to ensure syntactic correctness within the defined language. 
They provide a level of abstraction that is closer to the domain of 
the architect, exposing elements defined in the language like com-
ponents, connectors, and interfaces. 

Data bindings map XML elements and attributes into pieces of 
code (usually objects), hiding XML details such as namespaces, 
header tags, sequence ordering, etc. The objects in this library 
correspond to the types defined in the XML schemas. 
Manipulating the objects causes corresponding changes in the 
underlying XML document. Whereas a generic XML API like 
DOM exposes functions like addElement(...) and 
getChildElements(...), our data binding library exposes 
functions like addComponentInstance(...) and 
getAllGroups(...). Internally, the library uses the DOM 
implementation provided with Apache Xerces to manipulate the 
underlying XML document. 

Consider the following XML definition of a component, from the 
xADL 2.0 STRUCTURE & TYPES Schema (namespace information 
omitted for clarity): 
<complexType name="Component"> 
  <sequence> 
    <element name="description" 
      type="Description"/> 
    <element name="interface"  
      type="Interface" 
      minOccurs="0" maxOccurs="unbounded"/> 
    <element name="type" 
        type="XMLLink" 
        minOccurs="0" maxOccurs="1"/> 
  </sequence> 
  <attribute name="id" type="Identifier"/> 
<complexType> 

For this type, the data binding library includes a Java class that 
exposes the following interface: 
 void setDescription(IDescription value); 
 void clearDescription(); 

 IDescription getDescription(); 
 void addInterface(IInterface newInterface); 
 void addInterfaces(Collection interfaces); 
 void clearInterfaces(); 
 IInterface getInterface(String id); 
 Collection getInterfaces(Collection ids); 
 Collection getAllInterfaces(); 
 void removeInterface(IInterface interface); 
 void setType(IXMLLink link); 
 void clearType(); 
 IXMLLink getType(); 
 void setId(String id); 
 String getId(); 
 void clearId();  

This demonstrates that, despite having no knowledge of the se-
mantics of the ADL, the data binding library exposes functions 
that are closer (in terms of their level of abstraction) to the con-
cepts relevant to a software architect. This makes building archi-
tecture tools with the data binding library more intuitive than 
building them with an XML tool like Xerces. 

3.3.3 Apigen 
If the data bindings need to be rewritten every time a schema is 
added, changed, or removed, then the benefit of having them is 
negated. The syntax information present in the ADL schemas is 
enough to generate the data bindings automatically. Several pro-
jects already generate data bindings for DTD-based languages, but 
none yet exist that can adequately deal with XML schemas (sev-
eral projects are in very early ‘alpha’ stages of development). To 
remedy this, we built a tool called ‘apigen’ [13] (short for “API 
generator”) that can automatically generate the Java data binding 
library, described above, for ADL schemas. 

Apigen reduces overall tool-building effort by providing the data 
binding library to tool builders automatically. When an ADL’s 
schemas are changed, tool builders simply re-run apigen over the 
modified set of schemas to generate a new data binding library. Of 
course, bindings for elements that did not change will be pre-

Figure 2. Infrastructure tools and their relationships. 
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served in the library, minimizing the impact on tools that use the 
library. 

Apigen is not a generic data binding generator; it does not support 
the full XML schema language. However, it supports a large set of 
schema features, and so far has been sufficient to generate data 
bindings for all the xADL 2.0 schemas as well as schemas written 
by third parties. 

3.3.4 xArchADT 
The data binding library provides a traditional object-oriented 
interface to edit architecture descriptions. This requires the li-
brary’s callers to maintain many direct object references. In gen-
eral, distributed and event-based systems assume that components 
do not share an address space, and therefore cannot contain object 
references across components. Because of this, using such a li-
brary as an independent component in a distributed or event-based 
system is difficult.  

To address this, we have built a wrapper, called ‘xArchADT,’ for 
the data-binding library that provides an event-based interface 
instead of an object-oriented one. Instead of procedure calls, xAr-
chADT is accessed via asynchronous events. It uses reified first-
class object references, rather than direct pointers, to refer to ele-
ments in xADL 2.0 documents. That is, xArchADT assigns identi-
fiers to xADL 2.0 elements and those identifiers are used to refer 
to the elements. When the underlying architecture description is 
modified by one tool, xArchADT emits an event informing all 
listening tools of the change. This gives the data binding library 
the added property of loose coupling. 

Like the data binding library itself, this component is highly flexi-
ble. xArchADT uses Java’s reflection capabilities to adapt to 
changes in the data binding library automatically. That is, if the 
library is regenerated by apigen, xArchADT will work without 
modification. 

3.3.5 ArchEdit 
The data binding library and xArchADT expose different pro-
grammatic interfaces for manipulating architecture descriptions. 
Our infrastructure also includes a user interface-based tool called 
ArchEdit. A screenshot of this tool is shown in Figure 3.  Arch-
Edit depicts an architecture description graphically in a tree for-
mat, where each node can be expanded, collapsed, or edited. This 
is similar to many visual XML editors, except ArchEdit hides the 
XML details of the document from the user. The ADL’s XML 
schemas direct the structure of the displayed tree view, making the 

structure of the XML document and the structure of the displayed 
tree identical. This gives architects direct access to architecture 
descriptions without abstracting away details of the architecture. 

ArchEdit is syntax-driven—it does not understand the semantics 
of the displayed elements. It does not enforce stylistic constraints 
or other rules on the architecture description that cannot be speci-
fied in XML. The advantage of having such a tool is that it builds 
its view and interface dynamically from the XML schemas used to 
define the ADL. Therefore, it does not need to be modified when 
schemas are added, modified, or removed. This flexibility is valu-
able because it gives architects a simple graphical editor for ADL 
documents automatically, even if the new ADL features have 
recently been added. The cost of this flexibility is that ArchEdit 
cannot display the structure of the software architecture in an 
intuitive way—as a box-and-arrow diagram, for instance.  

ArchEdit is an event-based software component and accesses 
architecture descriptions through xArchADT. Changes to the 
architecture description made via xArchADT by ArchEdit or other 
tools are immediately reflected in the ArchEdit user interface. 

3.3.6 Other Tools 
Other tools, such as editors and analysis tools, can be integrated 
into this infrastructure by using the data binding library (for pro-
cedure-call based interaction) or xArchADT (for event-based 
interaction).  A separate project, ArchStudio 3 [5], uses xAr-
chADT as a data store for architecture descriptions and provides a 
framework for integrating additional tools that communicate using 
events.  

4. EXPERIENCES 
Our infrastructure has demonstrated its effectiveness in a number 
of problem domains. In this section, we highlight three experi-
ences that each demonstrate a different strength of the infrastruc-
ture. First, we show how our infrastructure supported the model-
ing and simulation of the architecture of a large military system—
demonstrating the scalability of the infrastructure. Second, we 
show how our infrastructure supported the development of an 
ADL now used in architectural modeling experiments for space-
craft systems—demonstrating the adaptability of the infrastructure 
to new architectural domains with unique modeling requirements. 
Third, we show how our infrastructure supported the development 
of ADLs for Koala [32] and Mae [18], two representations used to 
model product line architectures—demonstrating the extensibility 
of the XML schemas and tools in our infrastructure. These three 

Figure 3.  ArchEdit screenshot. 
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experiences demonstrate how the different aspects of our infra-
structure (XML-based extensibility, a base set of schemas, and 
flexible tool support) contribute to its effective use.  

4.1 AWACS 
To demonstrate the scalability of our infrastructure, we used it to 
model the AWACS aircraft’s [44] software architecture in an 
XML-based ADL. This architecture, consisting of several hundred 
components and connectors, was modeled using a subset of the 
xADL 2.0 schemas. We then used this model as the basis for an 
architecture-driven simulation of the AWACS software system. 

Because of the large size of the architecture, and its high internal 
regularity (similar elements repeated over and over), we built the 
initial AWACS description programmatically with a small (1000-
line) program that calls our infrastructure’s data binding library. 
The result was an architecture document consisting of approxi-
mately 10,000 lines of XML. Obviously, creating such a large 
description by hand or in a GUI-based editor would have been 
infeasible, further demonstrating the value of the data binding 
library. The AWACS description describes the components, con-
nectors, interfaces, and links in the architecture, along with com-
ponent, connector, and interface types. We validated this descrip-
tion against the xADL 2.0 schemas using XML Spy and visual-
ized it with ArchEdit. We used ArchEdit to inspect the architec-
ture and make further improvements until the model was accurate. 

We also built an AWACS simulator with our infrastructure to 
visualize the interactions among the components. We created 
implementations for each component type and connector type in 
Java. Using xArchADT to read the architecture description, a 
short bootstrap program instantiates and connects the elements. 
To visualize the simulation, we added an extension to Microsoft 
Visio that allows Visio to display events on a graphical architec-
ture diagram. A separate project has extended Visio further to 
render and lay out architecture diagrams automatically from 
xADL 2.0 descriptions. A screenshot of the simulator is shown in 
Figure 4. This shows that our infrastructure tools are useful in 
high-value, semantically oriented tools like simulators. 

In addition to scalability, this experience demonstrates several 
additional benefits of our infrastructure. First, it shows that our 
base schemas have effective modeling capabilities by themselves, 
as no extensions were needed to model the AWACS architecture. 
Second, it shows the flexibility of the infrastructure’s tool sup-
port, as we were able to use xArchADT (and, by extension, our 
data binding library) to create the architecture description and use 
it as the basis for our simulator. Finally, it shows the value of the 
user-interface based tools in our infrastructure, as we were able to 
use XML Spy to validate our description and ArchEdit to refine 
it. 

4.2 JPL 
As a demonstration of the adaptability of the infrastructure to a 
new domain with its own unique architectural requirements, we 
describe our experience with the Jet Propulsion Laboratory (JPL). 
JPL has adopted our infrastructure to support its Mission Data 
System (MDS) group, which is experimenting with modeling 
spacecraft software architectures. This domain induces new mod-
eling needs, particularly a unique notion of component interfaces. 
JPL has built extensions to the xADL 2.0 base schemas to repre-
sent these interfaces, and has used apigen to generate data bind-
ings for these new schemas. xADL 2.0’s separation of run-time 
and design-time models has also been especially important for 
JPL, since run-time software updates of spacecraft software will 
be a priority for them. JPL has also created mappings between 
their XML-based ADL, built in our framework, and other proprie-
tary notations that can be used to drive C++ code generators and 
software configuration engines already in use at JPL. 

This experience verifies that our infrastructure’s genericity and its 
extensibility mechanisms are useful in as-yet unexplored domains, 
especially with regard to the xADL 2.0 base schemas. JPL was 
able to reuse the xADL 2.0 base schemas, creating small new 
schemas to model domain-specific details of spacecraft software. 
JPL’s use of apigen and the associated data binding library to 
manipulate architecture descriptions further shows the value of 
our infrastructure’s tool support. Finally, their mapping of archi-
tecture descriptions to other representations shows the adaptabil-
ity of our approach to other, unforeseen situations. 

4.3 Mappings to Koala & Mae 
To demonstrate our infrastructure’s ability to capture concepts 
from an emerging research area and add tool support for those 
concepts efficiently, we have created schemas that add the unique 
modeling constructs of Koala [32] and Mae [18] to our base 
xADL 2.0 schemas [14]. Koala and Mae are two representation 
formats for capturing product line architectures. Each product line 
consists of multiple variants of a software architecture. These 
variants may be different configurations of the system for use in 
different environments, or may represent different stages of the 
evolution of an architecture over time. The xADL 2.0 schemas 
already provide basic support for product line architectures with 
the VERSIONS, OPTIONS, and VARIANTS schemas. However, both 
Koala and Mae have unique modeling characteristics that differ 
from those in the xADL 2.0 schemas and from each other.  

There are several differences between Koala and xADL 2.0. First, 
Koala does not support the notion of explicit connectors or ver-
sioning. Next, Koala has two constructs not present in xADL 2.0: 
diversity interfaces and switches. A diversity interface, represent-
ing a point of variation in an architecture, is required to be present 

Figure 4. AWACS simulator screenshot with detail callout. 



on variant components and must be an ‘out’ interface. A switch is 
an explicit construct applied at a variation point that creates the 
connection to the variant component that will be used. 

The Mae representation is somewhat closer to xADL 2.0. Two key 
differences exist between xADL 2.0 and Mae. First, component 
types in Mae are augmented with a string describing their archi-
tectural style. Second, component types in Mae also have a sub-
type relation and a reference to their supertype. 

We addressed these differences using several aspects of our infra-
structure. xADL 2.0’s flexibility at the level of individual ele-
ments was useful several times. For instance, Koala lacks support 
for explicit connectors, so we simply excluded connectors from 
our mapping since xADL 2.0 does not require them, demonstrat-
ing the modularity of the xADL 2.0 schemas at the level of indi-
vidual elements. When new constructs were required, like Koala’s 
diversity interfaces and Mae’s subtypes, we created simple sche-
mas that added these entities to xADL 2.0. 

This experience further demonstrates the effectiveness of the 
XML-based extensibility mechanism we have chosen for our in-
frastructure. Consider the following schema, used to add Koala-
style diversity interfaces to xADL 2.0 (some tags and namespace 
information omitted for clarity): 
<schema xmlns="diversity.xsd"> 
 <complexType name="DiversityInterface"> 
  <complexContent> 
   <restriction base="Interface"> 
    <sequence> 
     ... 
     <!--This is the only element  
        that changes--> 
     <element name="direction" 
              type="Direction" 
              minOccurs="0" maxOccurs="1" 
              fixed="out"/> 
     ... 
    </sequence> 
    <attribute name="id" 
               type="Identifier"/> 
   </restriction> 
  </complexContent> 
 </complexType> 

 <complexType name="DiversityComponentType"> 
  <complexContent> 
   <extension base=" ComponentType"> 
    <sequence> 
     <element name="diversity" 
              type="DiversityInterface" 
              minOccurs="1" maxOccurs="1"/> 
    </sequence> 
   </extension> 
  </complexContent> 
 </complexType> 
</schema> 

This schema subtypes the definition of an interface to create a 
diversity interface, and extends the definition of a component to 
add such an interface. Note the relative simplicity of this schema; 
other schemas (shown in full in [14]) are also simple and straight-
forward. For the Koala and Mae mappings, we successfully exer-
cised the full gamut of XML schema-based extensibility tech-
niques (creation of new elements, extension of existing elements, 
restriction of elements, etc.)   

This experience also reinforces the effectiveness of the infrastruc-
ture tools. We used XML Spy to verify and create our extension 
schemas and apigen to create a new data binding library that sup-

ports them. ArchEdit was able to support these schemas automati-
cally. As such, after writing the short extension schemas required 
to map Koala and Mae into our infrastructure, our tools provided 
parsing, syntax checking, and GUI editing abilities automatically. 

5. RELATED WORK 
Our infrastructure has its roots in several key areas of research and 
practice. First, research on traditional and domain-specific ADLs 
indicates the need for new representations and features and the 
ability to create them efficiently. Second, early research on XML-
based ADLs showed that XML could be effectively used to de-
velop ADLs. Finally, UML is a heavyweight, extensible design 
notation that represents a different way of modeling software sys-
tems. Our infrastructure is described in these contexts here. 

5.1 Traditional and Domain-Specific ADLs 
As noted in Section 2, traditional ADLs (and the wide prolifera-
tion thereof) are the inspiration for this work. Additional motiva-
tion comes from domain-specific software architecture (DSSA) 
research, which has shown that architecture description languages 
tailored to specific domains can increase automation and reduce 
effort in the software development process. The amount of reuse 
and abstraction possible in a single, well understood domain, such 
as avionics [43], far exceeds that possible in the general case. 

5.2 XML-based ADLs 
XML-based ADLs have been investigated in a limited fashion 
over the past few years [21][33]. These ADLs are able to take 
advantage of XML’s extensive off-the-shelf tool support., but 
their reliance on DTDs prevents easy modular extension. The 
creation of a new ADL requires the development of a “hybrid 
DTD” that describes how to compose the component DTDs that 
define the language. 

xAcme [39] is a more recent XML-based ADL that represents 
Acme concepts in a set of XML schemas, based on the xArch 
core. This ADL is another example of a successful use of XML to 
develop an ADL. However, it is simply another example of an 
ADL, and is not part of an infrastructure for experimenting with 
new ADLs or ADL features—its associated tool set is not meant 
to adapt to non-xAcme ADLs. 

5.3 UML 
Work done with the Unified Modeling Language (UML) [38] to 
model systems is closely related to, but distinct from, the 
contributions of our infrastructure. First, and most importantly, 
the intents of our infrastructure and UML (plus its associated 
tools) are quite different. UML is a rather heavyweight design 
notation, modeling the full structure and semantics of a software 
system in seven separate views. In contrast, our infrastructure is 
geared toward lightweight experimentation and rapid extension, 
allowing architects to choose and develop constructs that fit a 
particular need or interest with generic tools and base schemas to 
support them. 

A second distinction can be made between the extensibility 
mechanisms supported by UML and our infrastructure. Several 
papers have analyzed UML’s suitability as an ADL [36][37][19]. 
These papers have revealed that raw UML is well-suited to 
modeling some aspects of software architectures, but fails in 
modeling others. Therefore, approaches to representing 
architectures in UML require extensions to UML. An early 
approach [37] extends UML via changes to the UML meta-model, 



UML via changes to the UML meta-model, the model in which 
UML itself is defined. This approach allows arbitrary extensions 
and changes to UML and the resulting languages can be mapped 
to XMI, an XML-based language. However, this approach renders 
UML tools incompatible with the resulting language. A later ap-
proach by Robbins et. al. [36] extends existing UML elements 
with UML’s built-in extensibility mechanisms, namely stereo-
types, tagged values, and constraints. These extension mecha-
nisms are part of UML and are well-supported by UML tools. 
Robbins and Medvidovic found, however, that this is a less than 
ideal approach because it cannot fully represent all aspects of 
ADLs. Our infrastructure uses XML to provide extensibility com-
parable to editing the UML meta-model along with tools that 
support that extensibility. 

6. CONCLUSIONS 
This paper contributes an infrastructure for creating and extending 
architecture description languages. The infrastructure dramatically 
reduces the amount of effort involved in experimenting with and 
developing new architectural concepts. This reduction results 
from the three parts of our infrastructure: an XML-based extensi-
bility mechanism, a set of generic base schemas, and a set of 
flexible tools. It eliminates the need to build tools like parsers, 
syntax checkers, and data bindings for ADLs, allowing research-
ers to spend more time on building high-value tools that focus on 
addressing open research issues. 

Our infrastructure has demonstrated its effectiveness in a number 
of projects. We have demonstrated the scalability of our infra-
structure and the flexibility of our tools by modeling and simulat-
ing the AWACS software architecture. The adaptability of our 
infrastructure to a new, unexplored domain (spacecraft software) 
and the effectiveness of our generic xADL 2.0 schemas have been 
demonstrated by work done at JPL. We have demonstrated that 
our infrastructure can be used to capture aspects of an emerging 
research area (product line architectures) with Koala and Mae. 
Our tools provided a parser, data bindings, and a GUI editor for  
those aspects automatically. 

In the future, we plan to experiment with integrating more tools 
into our infrastructure to add useful features.  The xlinkit [31] tool 
can potentially be used to express and check constraints on XML 
links in xADL 2.0 documents. The SmartTools [6] tool set can 
potentially provide an XML-based language like xADL 2.0 with 
alternative editors and semantic analysis tools.  

For our future research goals, we plan to expand the xADL 2.0 
schemas to include new modeling constructs, particularly those 
that will support the specification of distributed and dynamic 
architectures. We are also adding new tools to our infrastructure, 
including ArchDiff, a tool for determining the difference between 
two architecture descriptions, and a selector that can select an 
architectural variant in a product line architecture description. The 
ultimate goal of our work with this infrastructure is to investigate 
issues related to distributed, dynamic software architectures, as 
well as applying architecture-based development to areas of the 
lifecycle such as deployment and maintenance. 

7. URL 
More information about our infrastructure can be found here: 

http://www.isr.uci.edu/projects/xarchuci/ 
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