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Software architectures promote development focused on modular functional building
blocks (components), their interconnections (configurations), and their interactions (con-
nectors). Since architecture-level components often contain complex functionality, it is
reasonable to expect that their interactions will be complex as well. Middleware technolo-
gies such as CORBA, COM, and RMI provide a set of predefined services for enabling
component composition and interaction. However, the potential role of such services
in the implementations of software architectures is not well understood. In practice,
middleware can resolve various types of component heterogeneity — across platform
and language boundaries, for instance — but also can induce unwanted architectural
constraints on application development. We present an approach in which components
communicate through architecture-level software connectors that are implemented using
middleware. This approach preserves the properties of the architecture-level connectors
while leveraging the beneficial capabilities of the underlying middleware. We have imple-
mented this approach in the context of a component- and message-based architectural
style called C2 and demonstrated its utility in the context of several diverse applications.
We argue that our approach provides a systematic and reasonable way to bridge the gap
between architecture-level connectors and implementation-level middleware packages.

Keywords: Software architecture; connectors; middleware.

1. Introduction

Research into the field of software architecture has yielded a plethora of architec-

tural styles, design notations, analysis techniques, and software tools for supporting

the systematic design of large software systems out of components and connectors.

The components in such systems tend to be heterogeneous and complex. That is,
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not only do they implement complex functional parts of the system, they may

also be implemented by different organizations, written in different programming

languages, run on different platforms, and have divergent expectations about the

properties of systems of which they are a part. This leads to the well-known prob-

lems of component integration and architectural mismatch. Being able to connect

software components in spite of such heterogeneity and then reason about their

interconnections is vital for successful system integration.

Most software architecture research has focused on modeling and creating sys-

tems with explicit software connectors. These connectors are first-class software

entities and facilitate the communication among two or more components. At the

architectural level, connectors are high level abstractions that prescribe properties

of component interconnections. Having these prescriptions available at design time

facilitates modeling and analysis of the software system’s design. Depending on the

nature of the application, software connectors may be simple (a UNIX pipe or a lo-

cal message bus) or complex (flexible publish/subscribe connectors across machine

boundaries). These connectors are often part of a larger architectural style — a

set of design constraints and patterns that elicit well-understood, beneficial system

properties [35]. Unfortunately, to date, few approaches to architecture-driven devel-

opment have explored how to implement connectors that match the architectural

properties specified at design-time.

Implementation-time connection of heterogeneous software components has tra-

ditionally been the domain of middleware [12]. Different kinds of component het-

erogeneity can be (partially) resolved by off-the-shelf middleware solutions like

CORBA [30], COM [33, 37], and JMS [20]. Middleware can help system integra-

tors and architects to integrate components across platform, language, and ma-

chine boundaries. However, using middleware often induces certain architectural

constraints on a system that may not be desirable [11]. For instance, using RPC-

based middleware like CORBA implies that all components must communicate

using RPC. This can have widespread effects on the design and analysis of any

CORBA-based system. The properties of middleware may or may not match the

properties of a connector specified in a software system’s architecture, leading to

mismatch between a software system’s implementation and its design.

The relationship between architecture and middleware and their respective

shortcomings suggest the possibility of coupling architecture modeling and anal-

ysis approaches with middleware technologies in order to get “the best of both

worlds”. Given that architectures are intended to describe systems at a high-level

of abstraction, directly refining an architectural model into a design or implementa-

tion may not be possible. One reason is that the decision space rapidly expands with

the decrease in abstraction levels: at the design level, constructs such as classes with

attributes, operations, and associations, instances of objects collaborating in a sce-

nario, and so forth, are identified; the implementation further requires the selection

and instantiation of specific data structures and algorithms, interoperation with

existing libraries, deployment of modules across process and machine boundaries,
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and so forth. One proposed solution to this problem has been to provide mecha-

nisms for refining an architectural model into its implementation via a sequence

of intermediate models [4, 22, 28, 29]. However, the resulting approaches have had

to trade off the engineer’s confidence in the fidelity of a lower-level model to the

higher-level one against the practicality of the adopted technique [25]. Furthermore,

to a large extent, the existing refinement approaches have failed to take advantage

of a growing body of existing (implemented) components that may be reusable

“as is”.

This paper pursues another strategy. We view software connectors as pieces of

software that provide a service that connects components. This service has well-

defined and well-understood properties, as specified at the architectural level. A

middleware solution, or a combination of middlewares, can be used to facilitate

implementation of this connector. Thus, the connector’s properties influence the

choice of middleware, rather than the middleware’s characteristics affecting the

properties of the connector. For example, a connector that uses message-based

communication will probably be easier to implement using message-based middle-

ware than using RPC-based middleware (although it is possible to use RPC-based

middleware for this purpose, as we will show). The middleware used to implement a

connector can also be influenced by other factors such as cost, ease of deployment,

and implementation-level concerns like programming languages or platforms. An

RPC-based connector that is used to connect Java components suggests that RMI

is a better middleware than, say, COM.

Thus, we hypothesize that component interconnections can be designed at the

architectural level and then facilitated by middleware, rather than having the choice

of middleware constrain the connections between components. We have conducted

a series of case studies to validate our hypothesis. A specific architectural style,

C2, has been used as the basis for this investigation [24, 36]. In evaluating our

approach, we learned several valuable lessons about integrating middleware into

software connectors. Our results are promising and indicate that a successful mar-

riage of architecture- and middleware-based techniques and technologies is indeed

possible.

The rest of this paper is organized as follows: Section 2 discusses background

material related to connectors and middleware. Section 3 discusses our approach

in detail. Section 4 describes the applications we built using our approach and the

lessons we learned from building these applications. Section 5 addresses general

lessons learned and future directions for this work. Section 6 finishes the paper,

covering the conclusions from our work.

2. Background

Exploring the relationship between software architecture-level connectors and mid-

dleware requires an understanding of existing architectural models for software

connectors and the capabilities of modern middleware systems.
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2.1. Connectors in software architecture research

The key role of connectors in architecture-based software development has been

accepted by the majority of the software architecture community. For example,

this is reflected in connectors becoming a part of the “core ontology” in the ACME

architecture interchange language [34]. However, current architecture research is

characterized by inconsistent approaches to fulfilling this key role of connectors.

Three projects representative of the state of the practice are Wright [6], UniCon

[34], and Rapide [22].

Wright is an architecture description language (ADL) whose particular focus is

formally specifying protocols of interaction among components in an architecture.

To this end, it employs a subset of communicating sequential processes (CSP) [15].

Given an architectural specification, Wright is able to determine the interaction

characteristics of components communicating through any given connector, e.g.,

whether they will deadlock. However, Wright does not provide any support for the

(correct) implementation of connectors.

UniCon, on the other hand, focuses on implementing connectors. To that end,

it supports a predefined set of connectors: pipe, file I/O, procedure call(s), data

access(es) and remote procedure call(s). UniCon’s shortcoming is that it supports a

limited set of connectors. Several of the connectors UniCon currently supports are

simple and their implementation is either already provided by the chosen under-

lying programming language or is otherwise trivial. UniCon provides an elaborate

mechanism and accompanying process for specifying new connector types with more

complex protocols. However, it is unclear how or whether this mechanism can be

used to incorporate any of the OTS middleware technologies discussed in Sec. 1.

Rapide is an ADL whose accompanying toolset provides extensive modeling,

analysis, simulation, and code generation capabilities. However, Rapide does not

model connectors as first-class entities, but rather specifies them in-line. This limits

their reusability and renders their verification more difficult, as each connection

must be analyzed individually. Implementation strategies and guidelines are thus

required for each individual connector, rather than each connector type.

There is, therefore, a need for an approach where powerful and extensible con-

nector modeling formalisms are coupled with connector implementation support

and architecture simulation and code generation. This is a complex task. Our hy-

pothesis is that implementing connectors with these properties can be made easier

by building upon existing middleware technologies.

2.2. Middleware

A full taxonomy of modern middleware systems is far beyond the scope of this

paper [12]. However, certain broad classifications of middleware can be made. For

instance, middleware packages resolve various types of heterogeneity, as follows:
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Platform Heterogeneity :

Middleware can allow communication among components running on different

platforms. Many CORBA ORBs, for instance, have compatible implementations

that run on various flavors of UNIX, Windows, MacOS, etc. Java-based middleware

like RMI [1] and JMS also allow this, but they do this by leveraging the portability

of the underlying virtual machine.

Language Heterogeneity :

Middleware can allow communication among components written in different

programming languages. Microsoft’s COM, for example, allows communication

among components written in Visual Basic, C++, and other Microsoft languages.

Contrast this with, say, RMI, in which all components must be written in Java.

Connectivity Heterogeneity :

Research middleware packages such as the QuO extensions to CORBA [38]

explicitly address quality of service (QoS) and can help to resolve differences in

aspects of connectivity like bandwidth and reliability. For instance, QoS-enabled

middleware for media delivery can downsample audio or video so a 10 mbit stream

is viewable by someone with a 56 kbit connection. Middleware with the ability

to store-and-forward information is useful for components with unreliable network

connectivity to other components or components that are nomadic.

Surprisingly, many popular industrial middleware packages assume a great deal

of homogeneity of components as well, for both business-related and technical rea-

sons. A single middleware technology will generally assume that all components use

one type of invocation, for instance. Explicit invocation is well-supported by RPC-

based middleware like CORBA, COM, and RMI. Implicit invocation using messages

is well-supported by message-oriented middleware (MOM) like WebSphere MQ [17],

Microsoft’s MSMQ [16], myriad JMS implementations [5, 20], or research-oriented

MOMs like JEDI [9] or Siena [8]. Support for other types of invocation are possi-

ble but clumsy in these packages; synchronous RPC can be built from messages,

CORBA’s event-service appears like an asynchronous event-notification service but

in reality is little more than the Observer pattern [13] reified as a “CORBAservice”.

Certain middleware packages are built to support the business needs of their cre-

ators rather than at the expense of flexibility; COM’s support for platforms other

than Windows is practically nonexistent; RMI is not interoperable with components

written in languages other than Java.

Middleware packages also vary across more specific, feature-oriented dimensions,

for example:

Structural Dynamism:

Different middleware packages have varying levels of support for the addition

and removal of components at run-time. Applications written in Polylith [32], for

example, must have their structure specified completely in advance, while applica-

tions that use message-oriented middleware can establish and destroy connections

as they run.
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Performance:

Middleware for common desktop or business applications is generally optimized

for these types of applications, but certain classes of applications such as flight

control software or medical software may have strict real-time requirements. Mid-

dleware like HARDPack [21] and TAO [3] offer special features for building soft-

and hard- real-time connectors.

Reliability and Fault Tolerance:

Synchronous and explicit invocation middleware like CORBA usually require

that all calls succeed or an error is reported, usually through a programming-

language exception. Asynchronous or implicit-invocation middleware can generally

be configured in multiple modes (best effort, at-most-once, reliable with timeouts,

and so on) depending on the needs of the application.

One drawback of using almost any modern middleware packages is the extent

to which aspects of the middleware permeate the code of the components that use

it. Consider a system built using CORBA. Component interfaces will be specified

in IDL, have its data types influenced by the IDL type system, discover each other

using the CORBA name service, and so on. Because of this, it is almost impossible

to swap CORBA for a different middleware (RMI or JMS, for example) without

significant recoding of components. This is a direct result of the choice of middleware

influencing the design of a system, instead of the other way around.

3. Approach

Any approach to building software architecture-level connectors using middleware

will depend heavily on the semantics of the architectural style being used. This

section discusses the C2 style, which we used as the basis for our investigation, and

how we applied our approach to build middleware-enabled connectors in that style.

3.1. Overview of the C2 style

We have chosen the C2 architectural style [36] as a foundation upon which to

initially explore the issues of integrating middleware with software architectures.

Basic constraints of the style are as follows:

• Components must assume that they do not share an address space with other

components.

• All communication among components is performed using messages, which are

independent data structures that do not contain direct pointers to data structures

residing in any component.

• Components are assumed to run concurrently; that is, they may not assume that

they share a thread of control with any other component.

• Components and connectors in the style have two distinct interfaces known as

“top” and “bottom” interfaces. Components and connectors can send and receive
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messages on both interfaces. Messages traveling “upward” are known as requests;

messages traveling “downward” are notifications. Components may make assump-

tions about what services are provided by components above them but may not

make assumptions about anything below them.

• A component may be connected to at most one connector on its top interface and

one connector on its bottom interface. A connector may be connected to zero or

more components or connectors on either interface. This induces a layered design

on C2 systems.

An example of C2 architecture is depicted in Fig. 1.

Fig. 1. Example C2 architecture. Jagged lines represent the parts of the architecture not shown.

The C2 style is a good fit for this task for several reasons. C2 has an explicit

notion of software connectors as first-class entities that handle component interac-

tions. The style prescribes certain basic properties of all C2 connectors: they are

message-based, two-way multicast buses. Messages arriving on a connector’s bottom

interface are routed to components attached to the connector’s top interface, and

vice-versa. C2 connectors can also perform optional tasks such as filtering, routing,

simple message transformation, and dynamic connection and disconnection of com-

ponents, many of which are also typically provided by various middleware packages.

The style is well-suited to a distributed setting as no assumption of shared memory

or thread of control is made by any set of components. This allows us to leverage

and experiment with the networking capabilities of middleware technologies. C2

supports a paradigm for composing systems in which components may be running

in a distributed, heterogeneous environment, architectures may be changed dynam-

ically, multiple users may be interacting with the system, multiple user interface

toolkits may be employed, and multiple media types may be involved.
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3.1.1. Architecture frameworks

Many architecture-based development approaches and architectural styles are fo-

cused on supporting system design only, and lack support for implementing systems

in the given approach or style. This is a key cause of architectural drift, in which a

system’s implementation diverges from its original architectural design. Maintain-

ing a software system’s design in its implementation has many benefits, among them

the ability to reason about or analyze properties of a design and be able to induce

those properties in the implemented system. Unfortunately, architectural styles like

C2 rely on constructs not usually found in object-oriented programming languages.

Software libraries called architecture frameworks [27] bridge this gap. An architec-

ture framework is a piece of software that provides constructs and functionality

specified by an architectural style in the context of a given programming language

or environment. It could be said, for instance, that the standard I/O library in the

C programming language is the architecture framework for the pipe-and-filter style

because it provides constructs (standard input and output bytestreams) as well as

methods for accessing them (functions like read(), write(), etc.) that are not native

or inherent in the C language.

More complex architectural styles require more complex architecture frame-

works. We have implemented architecture frameworks for supporting development

of C2-style applications in several different programming languages on several dif-

ferent platforms. To date, we have built C2 frameworks in C, C++, Ada, Java,

and Python. How constructs from the style are implemented in the given program-

ming language depends largely on the features of the language. For instance, the C

implementation of the framework represents components as software libraries with

predefined entrypoints. In an object-oriented programming language like Java or

C++, component implementations are generally class libraries containing a distin-

guished class inheriting from an abstract Component base class provided by the

framework. Desired framework characteristics can influence how the framework is

built, as well. We have several C2 frameworks built in Java for different purposes:

for example, one is a lightweight framework with fixed threading and message queu-

ing policies, one is a heavyweight framework where arbitrary threading and queuing

policies can be plugged in at compile-time.

The C2 architecture frameworks also influence how software connectors are im-

plemented. The object-oriented frameworks generally provide some sort of abstract

notion of a connector, such as a base class or an interface, that can be extended or

implemented to build a connector. Our frameworks also generally provide a trivial

implementation of an in-process two-way broadcast bus as a basis for making in-

process connections among homogeneous components. They also provide a way for

components and connectors to send and receive messages in the context of the local

programming language. Usually, sending a message is done through a sendMes-

sage() method call that returns immediately. Components and connectors receive

messages either through callbacks or polling, depending on the framework.
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Thus, a component communicates only by sending and receiving messages to and

from adjacent connectors. The connector’s responsibility is to communicate those

messages to the appropriate set of connected components, even if those components

are on different machines or platforms, or are written in different programming

languages. This is where middleware’s functionality is needed.

3.2. Encapsulating middleware in connectors

Our approach to integrating architecture-based software design and middleware

is to retain design knowledge at implementation time and facilitate implementa-

tion of that design using middleware. This can be accomplished by encapsulating

middleware inside implementations of software connectors [10, 26].

Middleware systems are implementation-level efforts to resolve various types of

component heterogeneity. In doing so, however, they may impose constraints or

assumptions on development that are contrary to the wishes of a software system’s

designers. For example, consider implementing a C2 connector in CORBA or any

other RPC-based middleware. In this case, the middleware can allow two compo-

nents written in different languages or on different machines to communicate, but

it also forces the components to communicate in a synchronous request-response

point-to-point fashion, which is not consistent with the asynchronous, one-way, mul-

ticast semantics of a C2 connector. In theory, a C2 connector based on CORBA

should appear (to attached components) just like an in-process C2 connector or

a connector facilitated by any other type of middleware. That is, the service of

asynchronous message routing provided by the connector should be constant, even

if the method by which the service is provided changes. This is already accepted

in component-based development; separation of a component’s interface(s) from

its implementation is considered fundamental to good design. Similarly, we believe

that a connector’s interface should be separate from its implementation, no matter

what middleware is used to facilitate that implementation. Somewhat surprisingly,

this does not hold true for most connectors/middleware in use today. As discussed

above, most middleware packages today require components to be coded with a

specific middleware package in mind.

This perspective suggests our general approach: a software architect designs an

application in the most appropriate and intuitive way, selecting or adapting an ap-

propriate architectural style. The architect selects the needed off-the-shelf (OTS)

components or designs new ones, then lays out the topology of components and con-

nectors (as guided by constraints of the architectural style). When the components

and their topology are known, one or more middleware platforms that are suit-

able for implementing the connectors are chosen and used in the implementation.

If middleware-based connectors with the appropriate characteristics have already

been developed (in a previous project, or as part of the architecture framework, for

example), they can be reused easily.
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Fig. 2. Realizing a software architecture (left) using a middleware technology (top-right) and an
explicit, middleware-enabled software connector (bottom-right).

A simple example that illustrates this strategy is shown in Fig. 2. A conceptual

architecture of a system is shown on the left. In this case, the C2 style mandates

that information flow only up and down through the connector (e.g., Comp1 and

Comp3 cannot directly interact, while Comp1 and Comp2 can). Assume we ignore

connectors in our implementation and want to implement the architecture with

components bound to a given ORB-based middleware, distributing the implemen-

tation over three locations. The top-right diagram depicts the resulting solution:

the single ORB ensures the cross-machine interaction of its attached components,

but not the topological and interaction constraints imposed by the style.

Contrast this with our approach, depicted on the bottom-right of Fig. 2. This

is a more principled way of integrating architectures and middleware. Recall that

we keep connectors as an explicit part of a system’s implementation infrastruc-

ture. Each component only exchanges information with a connector to which it

is directly attached; in turn, the connector will (re)package that information and

deliver it to its recipients using one or more middleware technologies. Each such

“middleware-enabled” connector exposes the same interface (to attached compo-

nents) as an in-process connector; it changes the underlying mechanism for mar-

shalling and delivering messages, but externally appears unchanged. Note that,

unlike the “middleware-only” solution shown in the top-right diagram, the bottom-

right diagram of Fig. 2 also preserves the topological and stylistic constraints of the

application. The middleware-enabled connectors are independent of other connec-

tors in the system, and can optimize aspects of communication where middleware

is not needed, such as the in-process connection linking Comp1 and Comp2.

Maintaining a connector’s interface and semantics allows much more flexibility

in application development and deployment. For instance, if it were decided later
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that Comp3 and Comp4 should indeed run in the same process, it would be possible

to make this change by simply reconfiguring the connector. The component code

would not have to be changed at all. The middleware package could be swapped

out similarly (for one that cost less or had better performance for example), also

without affecting component code.

Depending on the components being connected, a given middleware package

may or may not be a “close fit” — that is, it may or may not fit all the properties

of the connector perfectly. In this case, developers have three choices:

Adapt Middleware with Glue Code:

If the middleware’s features are close to the required connector properties, the

least expensive or difficult route will be to write glue code that adapts the middle-

ware to the necessary features of the connector. For instance, a best-effort messaging

middleware can be adapted for use in a reliable messaging connector with the use

of retries and acknowledgements. Event-based middleware can be adapted for use

in a synchronous request-response connector via the use of synchronization and

blocking constructs.

Combine Middleware Solutions :

When one middleware solution is not sufficient, it may be possible to com-

bine middleware technologies to achieve the desired result. For example, consider

connecting a Java 1.4 application to an off-the-shelf COM-based component. Mi-

crosoft’s Java Virtual Machine (JVM) provides middleware for interfacing Java 1.1

to COM, but does not support Java 1.4. Sun’s JVM supports Java 1.4, but does

not support COM. However, both JVMs support RMI. Therefore, it is possible to

build a Java 1.4 → (RMI) → Java 1.1 → (COM) → COM bridge by combining

these middleware solutions.

Build New Middleware:

If the properties required of a given connector are radically different from any

available middleware solution, the cheapest alternative may be to build new, special-

purpose middleware for inclusion in a connector. This is generally very expensive,

but may be the least costly alternative in this case.

Encapsulating middleware in connectors in this way increases the flexibility

an architect has in designing a system. A system can be initially designed as one

large architecture, regardless of where process, language, or communication-method

boundaries will end up when the system is implemented. As these decisions are made

(when specific off-the-shelf components are selected, for example, or the deployment

hardware for the system is chosen), connector properties will become more and more

concrete.

A key insight in encapsulating middleware in connectors that cross process

boundaries is that a software connector does not need to be implemented as a

single code artifact; in fact, the connector itself is simply a service that may span

process or even machine boundaries. In Fig. 2, a single connector in the software’s

abstract architecture description is actually implemented by three separate software
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artifacts running in different processes; together, these three segments make up a

single “virtual connector” with the same overall semantics as the architecture-level

connector.

In practice, it is not always possible to maintain all the semantics of an in-

process connector when a middleware-based connector is used instead. Notably, the

failure semantics for distributed or multi-process connectors are richer than those

for in-process connectors. An in-process connector, for instance, will likely never

drop messages or invocations. Multi-process or distributed connectors, on the other

hand, will have to deal with permanent and transient network failures, process

failures, and dropped messages. We believe that, for most architectures, decisions

on where process and machine boundaries will go will happen relatively early in

the architectural design process. These types of failures occur whenever any kind

of distributed systems middleware is used in a system. Therefore, as long as these

failure semantics are anticipated early in architectural design, the architecture will

still retain the flexibility to swap out middleware or reorganize connectors later.

Dealing with connector failures in a reasonable way results in more robust and

reliable architectures, and should be part of any serious architectural design in the

first place.

3.3. Application to the C2 style

Deciding how to break up a multi-process connector and still maintain the seman-

tics of the connector as a whole depends on the architectural style in question.

Figure 3 depicts two methods that can be used in the C2 style. The top of the fig-

ure shows a technique we call “lateral connection” in which two or more connector

segments (in this case, Conn1 and Conn2) are “split” horizontally and internally

connected laterally. Components may be attached to the top or bottom of any seg-

ment. In-process messages from top to bottom, or vice versa, are passed through

without going through any middleware. The bottom of the figure shows a variant

of this technique called “vertical connection” in which a connector is “split” verti-

cally. Because there are no valid in-process message paths in this strategy, all mes-

sages pass through the middleware. Lateral connection is more flexible, but slightly

more complicated than vertical connection for two reasons: First, lateral connec-

tions must process in-process messages separately. Second, optimization techniques

should ideally be used to minimize network usage. For instance, in the top half

of Fig. 3, notifications sent downward from Comp1 should not be sent across the

network to Conn2 because there are no receivers below Conn2.

We implemented multi-process middleware-enabled C2 connectors in the C++

and Java frameworks using many different middleware packages: ILU [2], VisiBro-

ker CORBA [7], RMI [1], Polylith [32], Q [23], and E-Speak [14]. The resulting

connectors are arbitrarily composable to support any deployment profile. The mo-

tivation for such a composition is that different middleware technologies may have

unique benefits. By combining multiple such technologies in a single application,
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Fig. 3. Connectors as a primary vehicle for interprocess communication. A single conceptual
connector can be “broken up” vertically (top) or horizontally (bottom) for this purpose. Shaded
ovals represent process boundaries. Each connector encapsulates an ORB (elided for simplicity).

Fig. 4. Using multiple middleware packages to obtain the benefits of both. RMI and COM are
both used here to integrate a Visual Basic and Java 1.4 component.
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the application can potentially obtain the benefits of all of them. For instance, a

middleware technology that supports multiple platforms but only a single language,

such as RMI, could be combined with one that supports multiple languages but a

single platform, such as Q, to create an application that supports both multiple

languages and multiple platforms. Figure 4 shows an instance where both RMI and

COM are used to integrate a Java 1.4 component with a Visual Basic component,

as described in Sec. 3.2. In fact, we used this exact strategy to integrate Microsoft

Visio with a Java-based development environment. Certainly, there are performance

and memory penalties to integrating multiple middleware solutions in this way, but

the alternative was to write custom middleware ourselves or purchase a COM-to-

Java bridge for hundreds or thousands of dollars [18, 19]. For a prototype integration

and proof of concept, the RMI+COM integration was sufficient. If later we chose to

replace this with custom middleware or an off-the-shelf bridge, however, we would

not have to change component code.

3.4. Lessons learned

Building middleware-enabled C2 connectors taught us a lot about the process of

integrating middleware into software connectors. Lessons included:

Mapping Procedure Calls to Messages :

C2 connectors communicate using one-way, asynchronous messages. Many of

the middleware packages we evaluated (ILU, RMI, Q, and CORBA) communicate,

by default, using synchronous request-response RPC. We do this by having one

connector segment simply call a public method on the other(s), passing the message

as a parameter in the call. This preserves the asynchronous, non-blocking semantics

of C2 connectors when each connector segment runs in its own thread of control.

However, if all components and connectors in an architecture share a thread of

control, a cross-process message send can hold up the whole architecture until the

called connector has received the message. However, in practice this rarely occurs.

Message-oriented middleware, or asynchronous calls like CORBA one-way calls, are

a better fit for message passing communication.

Discovery of Other Connector Segments :

In a multi-segment connector, each segment must be able to locate other seg-

ments running in other processes. Most middleware packages we evaluated include

some sort of nameserver that allows lookup of other segments by pre-defined names

passed to the connector segments as configuration parameters. Notable exceptions

include Q and E-Speak. In Q, no nameserver is provided, so we built a simple

nameserver that provided this functionality. E-Speak uses service lookup rather

than lookup-by-name, since it is envisioned as a service-matching middleware. This

can allow a little more flexibility in how applications can configure themselves, as

connector segments can locate other connector segments based on service charac-

teristics rather than simply by name. An interesting question is how to represent
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the nameserver architecturally, since the middleware nameservers we encountered

did not fit within the constraints of the C2 style. In the end, we chose to treat the

nameserver as a piece of infrastructure that was an internal part of the distributed

connector; therefore, it did not need to be modeled in C2. Because of the dynamic

nature of C2 applications (components and processes coming and going at runtime)

we believe that a more dynamic discovery protocol, using peer-to-peer discovery

techniques [31], is more applicable to C2-style architectures than a database-like

nameserver.

Establishing Connections between Connector Segments :

In an in-process connector, the whole connector is instantiated along with the

rest of the components in the application. In a multi-process virtual connector, or-

der and time of instantiation must be taken into account. Some of the middleware

packages we used, like ILU, CORBA, RMI, and E-Speak, are decidedly client-server

oriented. This means that server objects are expected to come online before client

objects, and that clients connect to servers at some later time. If a server object

is not online when a client object attempts to connect, an error is thrown. This

is generally not a problem in C2 architectures when vertical connections (bottom

half of Fig. 3) are used because of the dependency relationships of the C2 style.

Components and connectors “above” are server objects and components and con-

nectors “below” are clients. As long as the “above” portions of the architecture are

instantiated before “below” portions, the system will function normally. In the case

of lateral connection (top half of Fig. 3), the situation is slightly more complicated

since each segment of the connector must be both a client and a server. In this

case, connector segments must implement additional code to be able to look each

other up and connect to each other regardless of the startup order of the application

processes.

Unintended Consequences :

Depending on the properties of the underlying middleware, interesting capabil-

ities may come to the application without writing additional code. For instance,

middleware that allows objects and processes to come, go, connect and disconnect

from each other at runtime like RMI or CORBA increases application dynamism.

Creating new connector segments at runtime that will look up and connect to ex-

isting connector segments can change the topology, and therefore the behavior of

the application. This dynamism is achieved without writing any sort of additional

code to connect components in-process. In an architectural style that encourages

runtime change like C2, this is a beneficial, if unintentional, consequence of using

certain kinds of middleware.

4. Evaluation

After building several middleware-enabled connectors, we used these connectors to

create several multi-process, multi-platform, and multi-language versions of sample

software applications.
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4.1. Video game

One application we used as a platform for evaluating our work is a C2 version of the

video game KLAX, a falling-tiles game originally developed by Atari Corp. KLAX

was chosen because game play imposes time constraints on the application, bringing

performance issues to the forefront. The application’s architecture is depicted in

Fig. 5. The components that make up the KLAX game can be divided into three

logical groups. At the top of the architecture are the components that encapsulate

the game’s state. The game state components respond to request messages and emit

notifications of internal state changes. Notification messages are directed to both

the game logic components and the artist components. The game logic components

request changes of game state in accordance with game rules and interpret the

change notifications to determine the state of the game in progress. The artist

components also receive notifications of game state changes, causing them to update

their depictions. Each artist maintains the state of a set of abstract graphical objects

which, when modified, send state change notifications in the hope that a lower-level

graphics component will render them on the screen. GraphicsBinding receives all

notifications about the state of the artists’ graphical objects and translates them

into calls to a window system. User events, such as a key press, are translated by

GraphicsBinding into requests to the artist components.

Fig. 5. Architecture and deployment profile for KLAX. Shaded ovals represent process
boundaries.
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We used several deployment profiles to examine the issues in using middleware

technologies to implement architectures; one such profile is shown in Fig. 5. Two

KLAX implementations were built using the C++ and Java versions of the C2

architectural framework. A variation of the architecture was also used as the basis

of a distributed, multi-player KLAX application in which players compete via a

remote GameServer. The GameServer, in turn, notifies the appropriate players of

the changes to their states in response to their opponent’s action.

Performance of the different implementations of KLAX easily exceeds human

reaction time if the ClockLogic component is set to use short time intervals. Al-

though we have not yet tried to optimize performance, benchmarks indicate that

the C++ framework can send 1200 simple messages per second when sending and

receiving components are in the same process, with the Java framework being some-

what slower. In single-player KLAX, a keystroke typically causes 10 to 30 message

sends, and a tick of the clock typically causes 3 to 20 message sends. The efficiency

of message exchange across process and/or machine boundaries is a function of

the network bandwidth and the underlying mechanism (i.e., middleware) used to

implement the given inter-process/machine connector.

4.2. Software development environment

DRADEL is an environment that supports modeling, analysis, evolution, and imple-

mentation of C2-style architectures. It has also served as a platform for experiment-

ing with middleware-enabled connectors. Just like the application architectures it is

built to support, the architecture of DRADEL itself, shown in Fig. 6, adheres to C2

style rules. The environment is built using the Java C2 implementation framework.

Fig. 6. Architecture of the DRADEL environment.
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The User Palette, Type Mismatch Handler, and Graphics Binding components

from Fig. 6 provide a graphical front end for the environment. The Repository com-

ponent stores application architecture models. The Parser receives via C2 messages

a specification of an architecture, parses it, and requests that the Internal Repre-

sentation component check its consistency and store it. Once the specification of

an architecture is parsed and its internal consistency ensured, the Topological Con-

straint Checker, Type Checker, Code Generator, and UML Generator components

are notified of it. Topological Constraint Checker ensures adherence to the topo-

logical rules of C2 discussed in Sec. 3.1. Type Checker analyzes architectures to

establish conformance among interacting components. The Code Generator com-

ponent generates an implementation skeleton for the modeled architecture on top

of the Java C2 framework.

This base architecture has been deployed in several ways across traditional (i.e.,

desktop) and mobile (i.e., hand-held) platforms using middleware-enabled connec-

tors. Since our example in the next section focuses on mobile environments, we

will briefly discuss another enhancement of DRADEL, depicted in the upper-right

portion of Fig. 6. In order to provide developers with support for refining architec-

tures into designs and implementations that are potentially independent of the C2

framework, we have evolved DRADEL with the UML Generator component. UML

Generator implements a set of rules for transforming an architectural model into a

UML model, and issues a series of requests for building such a model. These requests

are routed to a connector that encapsulates Microsoft’s Java-to-COM middleware.

In turn, the connector bridges DRADEL’s topmost connector and Rational Rose,

a COTS environment for UML-based software development. Rose uses the infor-

mation contained in the requests sent by UML Generator to build a UML model

corresponding to a C2 architectural model of an application.

4.3. Personnel deployment application

The third application we have extensively coupled with our middleware-enabled

connectors enables distributed deployment of personnel in situations such as mil-

itary crises and search-and-rescue efforts. The specific instance of the application

depicted in Fig. 7 addresses military Troops Deployment and battle Simulations

(TDS). A computer at Headquarters gathers information from the field and dis-

plays the current battlefield status: the locations of friendly and enemy troops, ve-

hicles, and obstacles such as mine fields. The headquarters computer is networked

via secure links to a set of PDAs used by Commanders in the field. The comman-

der PDAs can connect directly to each other and to a large number of Soldier

PDAs. Each commander is capable of controlling his own part of the battlefield:

deploying troops, analyzing the deployment strategy, transferring troops between

commanders, and so on. In case the Headquarters device fails, a designated Com-

mander assumes the role of Headquarters. Soldiers can only view the segment of the

battlefield in which they are located, receive direct orders from the commanders,



August 29, 2003 13:53 WSPC/117-ijseke 00133

The Role of Middleware in Architecture-Based Software Development 385

Fig. 7. TDS application architecture distributed across three devices. The four middleware-
enabled connectors are highlighted. The connectors bridging the Commander and Soldier devices
are both in-process and inter-process connectors.

and report their status. Figure 7 shows a deployment with single Headquarters,

Commander, and Soldier devices.

The TDS application has provided an effective platform for investigating a num-

ber of the concepts discussed in this paper. A version of TDS has been designed,

analyzed, implemented, deployed, and dynamically evolved using the C2 style and

C2’s architectural implementation framework. TDS is implemented in four dialects

of two programming languages: Java JVM, Java 2 Micro Edition (J2ME), C++, and

Embedded Visual C++ (EVC++). The largest configuration of TDS constructed

to date has been deployed onto 105 devices with application size totalling over
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13 MB. Each device contains multiple components and connectors. The devices on

which TDS has been deployed are of several different types (Palm Pilot Vx and

VIIx, Compaq iPAQ, HP Jornada, NEC MobilePro, Sun Ultra, PC), running four

OSs (PalmOS, WindowsCE, Windows 2000, and Solaris). In turn, this allowed us to

investigate the suitability of multiple middleware solutions for use in concert in this

setting. Because the Headquarters subsystem runs on a PC, we had several choices

for middleware (e.g. RMI and CORBA). The Commander subsystem, running on

a Compaq iPAQ using JDK 1.1.8, limits our choice of middleware to RMI. As dis-

cussed in Sec. 4.4 below, the connection to the Soldier subsystem, running on a

Palm Pilot, required us to implement a small bit of custom lightweight middleware

using raw sockets due to space constraints.

4.4. Lessons learned

Our construction and integration of a number of different middleware implementa-

tions with the three applications described above revealed that the choice of middle-

ware can have unintended consequences. Some of them were beneficial, while others

were detrimental to the given application. Below we highlight those issues that we

believe to be independent of our chosen architectural style, application domains, or

applications.

Performance Issues (Jitter):

For a large class of applications, issues such as processing speed and communica-

tion latency are every bit as critical as functional correctness. For example, KLAX’s

need for consistently high performance, to support real-time gameplay, put stress

on many of the used middleware implementations. This was most obvious with

the Polylith integration into the C++ architecture framework. Polylith uses basic

UNIX IPC constructs to exchange data among processes and the UNIX process

scheduler schedules timeslices for each process in the system. On the Solaris ma-

chines we used for testing, the scheduler gave out large timeslices to each process in

the application. This resulted in “bursty” message exchanges between the processes.

The end-result was that messages would be processed in short bursts with delays

in between, essentially resulting in an unplayable game. For applications such as

DRADEL and even TDS, where constant streams of messages are not critical, this

would not have been an issue, but it was an insurmountable problem in a real-time

video game. This experience stresses that understanding the performance and be-

havioral characteristics of both the application and the chosen middleware is very

important.

Performance Issues (Mismatch):

Certain applications, such as KLAX and TDS, are characterized by high message

volumes. Deploying and running different parts of such an application on machines

with different speeds can cause performance mismatches: the faster process may

produce events at a higher rate than the slower process is able to consume. If this is
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a temporary mismatch (e.g., one of the processes was running garbage collection)

the effect on the application may be negligible. However, if this mismatch is per-

manent, the application may become unusable as messages back up in the faster

process. This is certainly the case with a video game such as KLAX. There are two

possible solutions to this problem: components may be designed to deal with lost

messages and the IPC connectors enhanced to drop messages when their internal

queues reach a certain length; alternatively, the components generating the offend-

ing messages may be instructed to do so at a lower frequency. For example, KLAX’s

Clock component can be modified to emit fewer ticks, slowing the game down so all

processes have ample time to process messages. Of course, such a modification will

impact the application’s functionality. This is another indication that understand-

ing the performance characteristics of an application and the various deployment

platforms is critical.

Application Size (Memory Footprint):

A growing class of software applications is intended to run on devices with

limited computational resources, such as PDAs or mobile telephones. An issue of

particular importance in such environments is the amount of available dynamic

memory. For example, the Palm Pilot, used for the deployment of the Soldier func-

tionality in the TDS application, has between 64 KB and 256 KB of dynamic heap

memory. Such a constraint eliminates from consideration almost all of the existing

middleware solutions, which routinely require several megabytes of memory; even

the implementation of RMI targeted at J2ME requires 90 KB of memory, which

may be unacceptable on Palm Pilots. Indeed, we were forced to implement the seg-

ment of the distributed connector running on the Soldier device in Fig. 7 using only

“bare” network sockets.

Interoperability Issues (Cross-Platform Portability):

Middleware solutions often make assumptions about the computing platform(s)

on which they will be installed and used. For example, RMI assumes and depends

upon the presence of Java, while Polylith is targeted at Unix environments. This

frequently limits the applicability of a middleware solution to a specific set of plat-

forms. Another limiting factor is the assumption that certain capabilities will be

readily provided by the hardware device and/or operating system on which the

middleware is to be installed. While this may have been a realistic assumption in

traditional (i.e., desktop) environments, it need not be the case for an emerging

class of novel and possibly experimental hardware platforms (e.g., mobile phones

and PDAs), or for specialized computing environments targeted at such platforms.

Thus, for example, Sun’s KVM implementation of J2ME does not support server-

side sockets, rendering unusable any middleware solution, including Sun’s own RMI,

that relies on such support. This is an indication of the impact that the emerging,

heterogeneous computing platforms are likely to have on the usability of off-the-

shelf middleware.
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Interoperability Issues (Available APIs):

One reason for using standard middleware solutions is that they will inexpen-

sively enable interoperability with third-party components. This was the case with

DRADEL’s integration with Rational Rose, shown in Figure 6. However, the em-

ployed middleware solution and/or third-party component may make certain as-

sumptions, reified in the middleware’s and/or third-party component’s respective

APIs, which are inconsistent with their desired use. For example, the connector

enhanced with the Java-to-COM middleware and the integrated version of Rose

provided effective support for communicating from DRADEL’s UML Generator

component to Rose, by issuing requests. However, there was no suitable way of

relaying any notifications originating inside Rose back to DRADEL, rendering the

communication uni-directional. Remedying such a situation would have required

finer-grain control over the middleware than is usually provided. The user of the

off-the-shelf middleware is then left with the choice of dealing with an imperfect

system or custom-building the desired functionality, which may be a very expensive

proposition.

Unintended Features :

Not all unforeseen consequences of using a standard middleware solution are nec-

essarily negative. For example, in the deployment of the KLAX application shown

in Fig. 5, the Layout Manager and Graphics Binding components are responsible

for rendering the game display on screen. Depending on the implementation of the

relevant connector segments and the middleware platform used, creating a second

copy of the two components’ container process and attaching it to the middleware-

enabled MPconnector2 results in a second window that can be used to observe a

game in progress from another machine, without changing any application code.

This potentially useful feature of the game was achieved “for free” because of the

flexibility of the employed middleware packages.

5. Critical Evaluation and Future Work

Overall, we believe our approach and evaluation have demonstrated that it is feasi-

ble to encapsulate middleware in connectors, allowing system architects to choose

the properties of connectors first, and find middleware that allows them to imple-

ment those connectors later. The success of our approach thus far motivates several

future research goals.

First, we have applied our approach only to C2-style architectures so far. In the

future, we would like to experiment with different architectural styles. Our approach

is based on two principal aspects of C2: explicit connectors and event-based com-

munication. C2’s use of explicit connectors allows us to easily separate the interface

of the connector from its implementation, allowing us to more elegantly encapsulate

middleware within them. C2’s exclusive use of event-based communication means

that connectors must basically implement one simple primitive, namely one-way

transmission of an independent data object. Our approach is independent of many
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other aspects and constraints of C2, such as the layered topology, the default use

of broadcast buses as connectors, and the separation of request and notification

messages. Therefore, we believe that our approach is applicable as-is to any archi-

tectural style that uses explicit connectors and message-passing as its only form of

communication.

Styles that use explicit connectors with other forms of communication, such as

remote procedure calls (RPC), should also be possible in our approach, but we

have not evaluated them directly. Still, we have shown how RPC-based middleware

can be used to implement event-based connectors, and it is possible to construct

the request-response mechanism of RPC using one-way events and thread blocking.

Application of our approach to connectors that use non-event-based communication

is an area of future work for us.

Styles that use implicit connectors (some forms of shared memory, procedure

calls, and so on) are slightly more difficult to integrate into an approach such as

ours, since there is no obvious separation between the connectors’ interfaces and

their implementations. In this case, we believe that programming language-level

tools such as compilers and preprocessors must be co-opted to intercept uses of

these implicit connectors and redirect them to alternate, middleware-based imple-

mentations. This is also a future direction for us.

Performance issues highlighted above such as jitter and mismatch revealed an

important general issue: the ability to state architecture-level properties of con-

nectors in advance of implementing them is very important for this approach. As

the properties of a connector become better understood, it also becomes easier to

effectively choose middleware to implement that connector. Some properties for

distributed connectors can be chosen for the convenience of component developers

(events vs. RPC, for example). When implementing distributed connectors, how-

ever, some properties are induced by the network itself. For example, it is possible

to create an in-process connector that never drops messages. This is strictly not

possible in a distributed setting: network failures can usually break a connector,

even if reliability-increasing techniques such as retries and alternate routing are

employed. Properties of the underlying network, such as throughput and latency,

are hard lower-limits on the throughput and latency of any connector built atop

that network. Ensuring connector properties may be possible by implementing them

with Quality-of-Service (QoS) enabled middleware. Understanding how to better

specify connector properties at the architectural level and how to derive constraints

on those properties from network properties are important future research goals for

us.

In the long term, we are interested in understanding how to integrate sytems

built with distributed connectors into other parts of the software lifecycle. Under-

standing how to use a software architecture to deploy, manage, and evolve a dis-

tributed system is an extended research goal that we have begun to pursue through

separate projects.
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6. Conclusions

Ensuring interoperability is a critical issue in the quickly-emerging marketplace of

heterogeneous software components. Using middleware as the only basis for inter-

operability in an application, however, is problematic. Middleware solutions allow

system designers to overcome certain types of heterogeneity, but also impose archi-

tectural constraints on the components with which they interact. We believe that

a better strategy is to design and describe connector properties first, during archi-

tectural design, then choose appropriate middleware solutions to build connectors

that achieve those properties.

This paper has presented an approach that has the potential to make this strat-

egy possible. The approach directly exploits architectural constructs (styles and

connectors) and provides a principled, repeatable solution to the problem of bridg-

ing middleware. We have employed sets of both commercial (RMI, VisiBroker,

E-Speak) and research (ILU, Polylith, Q) OTS technologies to test our hypothesis

that software connectors are the proper mechanisms for supporting middleware-

based implementation of architectures. Our results to date are quite promising: we

were able to take these diverse middleware technologies and still build and use C2

connectors with the same basic integration techniques.

Any approach must begin with understanding the underlying properties, both

shared and proprietary, of middleware technologies in order to make informed deci-

sions about the best middleware for use in building a particular connector. Choosing

appropriate middleware for a connector involves trading off many functional and

non-functional properties. Middleware choice will be influenced by the properties

of components which the connector must connect (language, method of commu-

nication), the properties of the platforms the connector must run on (taking into

account things like resource constraints and performance), and non-functional prop-

erties like cost and vendor support.

With so many diverse middleware solutions available today, coupled with the

complexity of modern component-based software applications, committing to a sin-

gle middleware solution is a major risk. Encapsulating middleware in connectors

mitigates this risk by allowing the middleware to be selected or changed without

recoding individual components. The benefits of this work will accrue from better

understanding of how to integrate the large amounts of legacy software at one’s

disposal and the knowledge of what (types of) components can be (re)used in an

application and under what circumstances. In turn, in tandem with related aca-

demic and industry-led work, this research has the potential to influence the next

generation of interoperability standards and provide the underpinning of a true,

open component marketplace.
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